《大连理工研发出横向异质结材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-01-04
  • 当前,能源和环境危机愈演愈烈,当我们询问路在何方的时候,开发和研究新能源材料用于转化太阳能,将其以化学能和电能的方式存储下来,成为极具前景的解决办法之一。自从1972年Fujishima和Honda在Nature上发表半导体TiO2用于光电化学水分解的文章以来,四十多年中,光催化和光电催化的研究文章汗牛充栋。然而,就半导体光电催化水分解这个优秀的体系来说,要达到工业化的条件,仍然面临诸多问题。研究者们在致力于水分解机理探索的同时,也着力于提高半导体的捕光能力、促进载流子分离和提升表面催化效率。简单来讲,调控半导体的带隙或者构筑合适的半导体异质结,以及负载相应的产氢产氧助催化剂都是通常的研究手段,另外,构建合适的材料形貌尺寸、利用表面等离激元的热电子效应、考察晶面效应、研究激子模式等等策略也在近年来得到广泛关注。

    成果简介

    近日,大连理工大学孙立成教授、侯军刚教授和中国科学院理化技术研究所林哲帅研究员在Adv. Energy. Mater.上发表最新研究成果“Atomically Thin Mesoporous In2O3–x/In2S3 Lateral Heterostructures Enabling Robust Broadband-Light Photo-Electrochemical Water Splitting”( DOI: 10.1002/aenm.201701114)。该文首先合成二维(2D)原子级薄层In2S3纳米片,然后在氧等离子体中原位氧化生成均一分散的In2O3–x,与In2S3构成横向异质结,该复合材料1.23 V处光电流密度较In2S3纳米片提升了21倍,达到1.28 mA/cm2。通过一系列表征和光电测试分析以及密度泛函(DFT)理论计算,该文认为可以在原子层面深入地理解这种超薄二维材料的界面结。并且,不同氧等离子体处理时间与光生载流子分离和迁移、光电化学水分解性能之间的关系也得以阐述。作者总结了这种材料的几个特性:超薄二维纳米结构具有很大的表面积,可以与电解液进行充分的接触;氧化处理得到丰富的介孔提供了大量活性位点,有利于活性物种的扩散和气泡的释放;富含氧空位的In2O3(In2O3-x)与In2S3构成的横向异质结具有宽光谱响应的特性,极大提高了In2S3的光电化学性能;空穴捕获实验、暂态光谱和理论计算都证明了载流子分离和迁移性能得到提高。这个工作指出了用原子级超薄二维横向异质结材料进行光电化学催化和太阳能转换的新思路。

    小结

    本文通过氧等离子体原位氧化In2S3二维超薄纳米片生成存在氧空位的In2O3–x纳米颗粒,二者构成了横向异质结从而提升其光电化学性能。这种新的设计理念可以应用于其他薄层二维半导体横向异质结的构筑,其优点在于,二维薄层材料容易造出更丰富的活性位点;氧等离子体处理引入大量的氧空位所形成的异质结大大提高了母体半导体的光谱响应范围,尤其对硫族半导体来说,有可能提高其稳定性;横向异质结构在二维层面发挥作用,极大地促进载流子的分离和迁移,并且很快在表面活性位点处参与反应;原子级层面界面结的形成与研究,为深入研究水分解机理提供了便利。

相关报告
  • 《德国KIT研发出高能阴极材料将电池容量提高30%》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-12-16
    • 近日,卡尔斯鲁厄理工学院(KIT)和合作机构的研究人员研究了用于未来高能锂离子电池的阴极材料合成过程中的结构变化,并获得了有关降解机理的新发现。他们的发现有助于开发更高容量的电池,从而增加电动汽车的行驶距离。 迄今为止,电力不足造成的行驶距离短阻碍了电动汽车的突破,而充电容量增加的锂离子电池将有助于解决这个老大难。应用材料-储能系统研究所(IAM-ESS)负责人Helmut Ehrenberg教授说:“我们正在开发这种高能系统,基于对电池电化学过程的基本理解,并通过创新地使用新材料,我们认为锂离子电池的存储容量可以增加30%”。这项研究是在德国最大的电化学储能研究平台Ulm&Karlsruhe的电化学储能中心进行的。 高能锂离子技术与传统技术的区别在于特定的阴极材料。与迄今为止所使用的镍、锰和钴的不同比例的层状氧化物不同,采用含过量锂的富锰材料,能大大提高阴极材料的单位体积/质量储能能力。不过,这些材料的使用一直存在问题。 在锂离子的插入和提取过程中,即电池的基本功能过程中,高能阴极材料会发生降解。经过一定时间后,层状氧化物转变为具有高度不利电化学性能的晶体结构。结果是,平均充放电电压从一开始就降低了,这就阻碍了高能锂离子电池的发展。 研究人员现已在《自然通讯》中描述了降解的基本原理:“基于对高能阴极材料的详细研究,我们发现降解不是直接发生的,而是通过形成迄今几乎未发现的含锂岩石盐结构而间接发生的。此外,氧气在反应中起着重要作用。” 除这些结果外,研究还表明,有关电池技术性能的新发现不一定必须直接从降解过程中得出,相关科学家在合成阴极材料的研究中发现了它们。 卡尔斯鲁厄理工学院的发现标志着电动车高能锂离子电池发展道路上的一个重要里程碑。 
  • 《清华、北大、西交大、中科大、哈工大、大连理工等10逾所高校获2017国家科学技术奖的材料类项目》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-10
    • 1月8日,2017年度国家科学技术奖励大会在京举行,揭晓了“国家三大奖”(国家自然科学奖、国家技术发明奖、国家科学技术进步奖)和国家最高科学技术奖、中华人民共和国国际科学技术合作奖的归属。 2017年度国家科技奖评选出271个获奖项目和9名科技专家。其中,国家自然科学奖35项,国家技术发明奖66项,国家科学技术进步奖170项。 教育部公布的《高校获2017年度国家科学技术奖励情况》显示,全国共有113所高等学校作为主要完成单位获得了2017年度国家科学技术奖三大奖通用项目157项,占通用项目总数216项的72.7%。其中,有64所高校作为第一完成单位的获奖项目数为114项,占通用项目授奖总数的52.8%。