《高分子聚合物或将解决耐药超级细菌问题》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-03-12
  • 当前,耐药菌数量在不断增加,并可能很快超过我们开发新抗生素的能力。近日,一个国际团队正试图用合成高分子聚合物复合材料来治疗多种超级细菌。

    这家来自IBM Research以及新加坡生物工程和纳米技术研究所(IBN)的团队创建了一类新的合成聚合物,并希望可以治疗五种致命的耐药细菌。虽然这种方法并不新鲜,但之前其他尝试过的方法却遇到了一些障碍,如材料的不可生物降解特性可能导致体内聚合物的毒性积聚。IBM Research旗下James Hedrick在一篇博客文章中写道,一些聚合物难以靶向地定位多种细菌菌株。

    IBM制造的合成高分子聚合物复合材料称为胍官能化聚碳酸酯的聚合物,该物质可以通过与细菌细胞结合,然后通过细胞膜转运到细胞质中发挥治疗作用。一旦该合成物进入细胞内,它们会引起细胞内容物(如蛋白质和基因)沉淀或以固体形式沉积,最终杀死细菌细胞,达到治愈的目的。

    研究人员在感染了五种不同超级细菌(包括大肠杆菌和耐甲氧西林金黄色葡萄球菌MRSA)的小鼠以及全身系统性感染的小鼠中测试了该药物的疗效。经过合成高分子聚合物复合材料治疗后的小鼠体内显示,相关细菌得到了消除,细菌感染的现象也得到了有效地治疗,并且仅存在“可忽略”的毒性副作用。这一系列的研究发现发表在了Nature Communications杂志上。

    根据《抗菌药物耐药性报告》显示,超级细菌每年会导致约70万人死亡。如果未来超级细菌的抵抗性继续进一步发展恶化,细菌感染导致的死亡人数每年可能会增加到1000万人。目前,超级细菌已经开始打败了最强的一线抗生素多粘菌素,这种抗生素目前用于治疗感染耐药细菌的患者。

    研究人员正在为治疗耐药细菌感染寻找新的抗生素或努力改善现有抗生素的治疗效果。罗格斯大学领导的研究小组从意大利土壤中发现一种微生物产生的新抗生素,该抗生素可用于对抗生素利福平产生抵抗的细菌。昆士兰大学的科学家对抗生素万古霉素进行了新的研究,发现该药物具有抗MRSA和耐万古霉素肠球菌(VRE)的潜力。

    洛克菲勒大学的研究小组创建了一种全新的分子,称为“lysibodies”,它是人体抗体和溶素的混合物,与细胞壁上的碳水化合物结合。这些人类胚胎混合物附着于细菌细胞,并触发免疫反应来破坏细菌。加拿大研究人员正在试图研究并遏制向20多种致病菌供应能量的机制和途径。

    IBM团队进行的基因组分析表明,即使经过多次处理,细菌也不会对其聚合物产生耐药性。目前,科学家们现在正在寻找合适的机构达成药物合作伙伴关系,期望可以将聚合物开发成抗菌治疗药物。

  • 原文来源:http://news.bioon.com/article/6718854.html
相关报告
  • 《JACS:合成高分子解决肿瘤耐药问题》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-03-19
    • 肿瘤仍然是全世界每年确诊的1400万人的致命威胁。而根据美国癌症协会的数据,过去30年间癌症的5年生存率在稳步提高,已经提高了将近70%。然而目前的癌症治疗手段,如传统的放疗,通常也会杀伤正常细胞。化疗通常会由于现有的耐药细胞或者诱导出的耐药癌细胞导致的耐药性而失败。因此耐药性是一个致命的打击,而它也是美国政府启动的癌症登月计划主要目标之一。 为了解决这个关键问题,来自美国IBM的科学家James L. Hedrick与新加坡生物工程和纳米技术研究所(IBN)、分子和细胞生物学研究所(IMCB)及新加坡遗传学研究所(GIS)的科学家们一起开发出了一种新型合成高分子可以选择性杀死癌细胞,同时不会影响正常细胞。在实验中,癌细胞不会对这种新的大分子产生耐药性,这将有效杀伤对其他药物产生耐药性的癌细胞。 James L. Hedrick实验室的研究聚焦于大分子(一个高分子或者高分子组装体)的抗癌潜力,它们可以以不同的机制对抗疾病。这项研究发表在《Journal of the American Chemical Society》上。 在这项研究中,研究人员表明包含一些正电基团的高分子可以与癌细胞表面的负电荷相互作用。这些大分子的另一个特点就是可以与细胞膜融合,从而打孔进入细胞从内部杀伤癌细胞。在早期测试中,这些大分子可以对抗耐药的癌细胞及癌干细胞,可以防止癌细胞迁移,可以在多种药物治疗之后仍然有效。 该研究团队旨在解决癌症治疗中长期存在的问题:包括耐药性、肿瘤组织药物富集太少、化疗药物低溶解性、从机体中过快清除、毒副作用等。这项研究使用实验室模型表明了这些分子的早期治疗疗效,表明它们是一种潜在的治疗方法。这些大分子被设计可以自组装形成纳米颗粒,从而可以通过肿瘤组织中多孔的血管进入肿瘤组织。 在这项研究中,纳米颗粒的外壳可以防止纳米颗粒与正常细胞相互作用,从而使得纳米颗粒在到达肿瘤组织之后才与负电细胞膜相互作用导致膜破坏从而杀死癌细胞。作者也评估了多次使用这种高分子进行治疗是否会使癌细胞产生耐药性。结果发现在多次治疗之后,高分子仍然具有疗效,且癌细胞没有产生耐药性。总体而言,这种大分子可以克服常规化疗遇到的一系列问题。
  • 《纳米聚合物用于智能药物传输系统》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-05-12
    • 聚合物材料已经彻底改变了生物材料的世界。由于其优越的性能,大量的工作已被做集成聚合物纳米粒子与智能药物传输系统。 聚合物在药物传递中的概述 聚合物材料具有多种特性,使其成为理想的生物应用材料,特别是在药物传递系统中。这些材料除了相对容易设计和制备外,还具有良好的生物相容性和生物计量性能。当聚合物与药物传递系统结合时,已经证明了其独特的能力,能够有效地将治疗药物传递到指定的目标组织。 聚合物人们 最近的一些研究工作涉及到用于药物传递的聚合物纳米颗粒,重点是将这些材料用作药物载体。当用作纳米载体时,天然、半合成和合成性质的聚合物材料被称为球体和/或胶囊。与任何智能药物递送系统一样,聚合物纳米载体已被证明能够提供疏水药物的位点特异性靶向,同时提高药物的生物利用度和控释度。 在已被研究的各种基于纳米技术的系统中,聚合物纳米载体引起了相当大的关注。科学家们已经成功地控制了聚合纳米载体的核-壳结构,使其既能封装药物,又能将药物与核结合。 聚合物纳米载体不仅在健康组织和被包裹药物之间提供了保护屏障,而且改善了药物的药代动力学,增强了被包裹药物直接进入肿瘤的积累。 中枢神经系统障碍 血脑屏障是由与中枢神经系统内皮细胞紧密连接形成的一种物理屏障,控制和限制物质进入大脑的通道。虽然血脑屏障可以保护大脑免受病原体和潜在的神经毒素的侵袭,但它也极大地限制了治疗药物进入大脑治疗中枢神经系统疾病的途径。 为了克服这些挑战,人们研究了几种不同类型的纳米颗粒载体,其中包括金属、聚合物、脂质和靶向纳米颗粒载体。 与金属纳米颗粒相比,聚合物纳米颗粒更柔软、更灵活、密度更低,这使得这些颗粒在治疗性药物封装时更具延展性。 聚合物纳米粒子的大小、表面电荷和纵横比等各种性质可以改变,以满足各种药物的需要。为了穿过血脑屏障,聚合物纳米颗粒要经历一个称为内吞作用的过程,这个过程涉及到纳米颗粒被接受细胞的细胞膜吞噬。 一些研究也研究了不同的方法,例如添加内源性物质使聚合纳米载体的表面功能化,以进一步增强封装药物的位点特异性递送到大脑。 口服给药 口服给药是最简便的给药方法之一。这种方法不仅对患者无痛,而且是一种成本效益高的解决方案,具有有限的无菌限制,因此可以很容易地生产。 不幸的是,口服给药往往会导致药物的生物利用度较差,这是由于药物在酶环境(如胃内环境)中的水溶性、膜渗透性和稳定性。因此,这些限制限制了口服药物的种类,当这些药物必须通过其他方法,如静脉注射或腹腔注射时,这就导致了患者依从性差。 已经开发了几种不同的聚合物纳米技术来促进各种药物的口服,其中包括化疗药物、单链RNA (siRNA)和用于治疗炎症性肠病的小分子药物,以及用于糖尿病患者的胰岛素。 尽管这些研究仍处于临床前的发展阶段,但它们已经显示出了巨大的临床应用潜力。