《突破 | 南科大课题组在非常规磁性领域的研究中取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2025-02-05
  • 近日,南方科技大学物理系教授刘奇航课题组在兼具传统铁磁体与反铁磁优势的非常规磁性领域的研究中取得进展,相关评论文章以“Different facets of unconventional magnetism”为题发表在学术期刊《自然物理》(Nature Physics)上。

    磁学是凝聚态物理和材料科学中一个基础且广阔的研究领域,由此催生出了以电子自旋为信息载体,通过探测和操控自旋状态以实现信息表达、存储和读写的自旋电子学。过去,自旋电子学的研究主要集中在存在宏观磁化且易受操控的铁磁体,但宏观磁矩的存在也带来了杂散场和易受外场干扰的问题,从而使得实现高密度集成器件变得困难,铁磁器件的运行频率通常限制在GHz量级。相比之下,反铁磁体的净磁矩为零,几乎不存在杂散场,也对外磁场不敏感。同时,反铁磁体的共振频率可达到THz量级,可以实现原子级密度的信息存储。然而,反铁磁体的零净磁矩也使得磁序难以探测和调控。因此,反铁磁材料的发现者、诺贝尔奖得主Louis Néel认为反铁磁材料是“有趣但无用的”(interesting but useless)。

    为了应对这些问题,科学家们提出了结合铁磁体特征和反铁磁体构型的新型反铁磁材料,包括自旋劈裂反铁磁体、反常霍尔反铁磁体等。自旋劈裂反铁磁体具有补偿零净磁矩的反铁磁特征,但其不同自旋的磁子格之间的自旋群对称性破坏了非相对论性的自旋简并行为,呈现出反铁磁自旋劈裂的特征。自旋劈裂反铁磁体包括共线反铁磁体中自旋相反的两个磁子格通过实空间旋转等变换相互关联的交错磁体(altermagnetism),以及自旋平移群不存在相互垂直的多个自旋二重转轴的非共线反铁磁体等,其对称性判据在刘奇航团队前期关于自旋空间群理论文章中被完整讨论(Physical Review X 14, 031038 (2024))。2024年,刘奇航团队与物理系刘畅教授合作在非共面构型的MnTe2中首次发现了反铁磁体中的自旋劈裂现象,证实了这类非常规磁体的存在(Nature 626, 523 (2024)),相关工作入选两院院士评选“2024年中国十大科技进展”的候选新闻(含最终当选新闻共20条)。同年,交错磁体的发现被评为Science年度十大突破进展。

    另一类兼具零净磁矩的反铁磁特征和类铁磁特征的材料是反常霍尔反铁磁体。反常霍尔效应通常被认为出现在时间反演破缺的系统中,因而过去被长期认为是具有宏观磁矩的铁磁体的独有行为。近期,人们发现在一些反铁磁体中允许非零贝里曲率的出现。这类非常规磁体包括自旋轨道耦合下的共线/共面反铁磁(例如MnTe和Mn3Sn),以及无自旋轨道耦合极限下允许几何霍尔效应的非共面反铁磁体(例如CoNb3S6)。

    自旋劈裂反铁磁体和反常霍尔反铁磁体在非常规磁性框架下的关系

    在三维的共线反铁磁体中,自旋劈裂需要同时破缺时间反演联合空间反演(PT)对称性和自旋翻转联合晶格分数平移(Uτ)对称性,反常霍尔则是同时破缺PT和时间反演联合晶格分数平移(Tτ)对称性。由于这两个条件在共线自旋群框架下可以相互转化,因此在交错磁性领域迅速发展的同时,人们对于具有不同性质的非常规磁体的理论描述框架和材料选择并不清晰,经常出现“交错磁体描述了所有具有铁磁特征的反铁磁体”的模糊认识。

    评论文章首先指出了自旋劈裂反铁磁体和反常霍尔反铁磁体这两类体系的独立关系,澄清了将反铁磁体中不同种类铁磁行为在对称性约束上混为一谈的理论误区。自旋劈裂反铁磁体通过自旋空间群允许动量空间任意波矢出现非零自旋极化定义,而反常霍尔反铁磁体通过磁空间群允许坐标空间非零净磁矩来定义。进而,在寻找兼具铁磁体和反铁磁体优势材料的背景下,评论文章提出的非常规磁性概念囊括了多个凝聚态物理领域的前沿课题,除自旋劈裂和反常霍尔效应之外,还包括量子几何,多铁性,拓扑磁体等,为磁学和自旋电子学中的若干领域提供了新的研究思路。

    非常规磁性的研究展望,包括刘奇航课题组的一些前期相关工作

  • 原文来源:https://www.nature.com/articles/s41567-024-02750-3
相关报告
  • 《Nature&Science:2021年金属领域重大突破性进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-26
    • 在古代,金属材料一般用在驷马战车以及兵器等领域,在那个时代,即使铸造后的合金,其性能就能满足各方面的需求。但在今天这个时代,尤其是在航空航天等高端领域,金属材料的力学性能则面临着巨大挑战。随着新一代航空发动机以及航天领域对材料性能的要求进一步提高,当前绝大多数材料各方面的性能急需提高。接下来,笔者盘点一下2021年金属材料发表在Nature&Science的重量级成果。 1. 香港城市大学刘锦川院士团队:微成分浓度调节的新型3D打印设计,实现合金组织调控; 与传统工艺相比,3D打印整个了多步工序,可以很好地实现各种复杂零部件的自由制备。然而,无论是新材料还是新加工技术的创新,如果没有协同结合,都很难成功。鉴于此,来香港城市大学的刘锦川教授团队开发以一种微成分浓度调节的3D打印新工艺,成功解决了传统3D打印钛合金晶粒粗大,性能差的难题。这种方法属于一种原位设计方法,通过激光-粉末床融合使合金在成分浓度上进行调制。该文对两种不同合金熔体Ti – 6Al – 4V和少量316L不锈钢合金的进行局部均匀化,就能够利用316L中所含的β稳定元素对Ti-6Al-4V基体进行微米级成分浓度调制。经过成份调制后的合计主要由亚稳β基体和纳米级α'片层双相结构组成。这种组织展示了约1.3GPa的抗拉强度,约9%的延展性和优异的加工硬化速率(>300MPa)。这种方法为特定结构和功能应用的成份浓度调制异质合金设计创造了一条新途径,具有广阔的前景。 2.金属所卢磊团队:梯度纳米位错胞结构导致高强高塑的高熵合金; 由于迄今为止所报道的高熵合金(HEAs)的基本塑性变形特征和机理与传统金属相似,所以HEAs的强度和塑性之间存在矛盾。在传统金属中,材料的塑性由线缺陷和面缺陷,例如位错、孪晶以及晶界的运动提供,而强度则需要有强有力的障碍物阻碍这些缺陷的运动,例如全位错以及孪晶与不同结构缺陷(如高角度晶界(HAGBs)或孪晶界(TBs))相关的相互作用,导致它们的运动受阻。与传统合金不同的是,高熵合金中存在化学短程有序(SRO)和空间可变层错能(SFE)在原子尺度上的局部不均匀性,导致一些不寻常的位错行为,例如变化的位错滑移模式,以及对位错运动/积累摩擦阻力的增强。这种现象主要是由于纳米尺度(通常<3 nm)的局部浓度波动或局部SRO所致,一般认为其有助于改善材料的力学性能。到目前为止,尽管很多文献报道了在高熵合金中同时提高强塑性的方法,但本文提出的则为一种新的策略,机理上不同于以前的策略。多主元高熵合金的强度提高往往伴随塑性的降低,这种强塑性相互矛盾主要来源于金属材料的塑性变形机理。即材料中的线缺陷,如位错的运动贡献塑性,但位错的堆垛与塞积则贡献强度。近期,金属所沈阳材料科学国家研究中心卢磊研究员团队与美国田纳西大学、橡树岭国家实验室、阿贡国家实验室的科学家合作在这一科学难题研究方面取得重要进展。研究人员通过小角度往复扭转梯度塑性变形技术,在Al0.1CoCrFeNi高熵合金中引入梯度位错胞稳定结构,同时保持其原始晶粒的形貌、尺寸和取向不变。拉伸力学测试结果表明:这种新型结构不仅显著提高材料屈服强度,是粗晶和细晶材料的2-3倍。同时还使其保持良好的塑性和稳定均匀的加工硬化。其强塑积-屈服强度匹配明显优于文献报道中相同成分的均匀或梯度结构材料。对变形机理的研究结果表明:从材料的顶部表面到心部,合金在变形过程中存在显著的连续硬化。这种硬化特性与梯度纳米晶常规金属的变形诱导连续软化的机制有很大的不同。高熵合金中梯度位错结构在塑性变形过程中激活了不全位错--层错的相互作用,从而诱导塑性变形机制。在变形初期,纳米级别的细小层错从位错胞壁形核、然后不断滑移并扩展,其密度随拉伸应变增加而增加,逐渐演变成超高密度三维层错(和少量孪晶界)网格,直至布满整个晶粒。超高密度细小层错/孪晶的形成与位错相互作用,协调变形。一方面有效促进了其塑性变形并进一步细化初始位错结构、阻碍其它缺陷运动而贡献强度。另一方面,层错和孪晶的形成阻碍了位错的平均自由程,增加了合金内部缺陷的密度,从而导致合计超级的加工硬化,提高了整体的塑性变形。 3.发现多晶金属的晶界速度和曲率不相关; 在热处理过程中,晶界的移动速率往往和曲率存在一定的正相关关系。这是模拟多晶材料在退火过程中晶粒如何变粗的一个重要关系。之前的研究基本都假定晶界以与晶界平均曲率(κ)和晶界能量(γ)成正比的速度(v)向其曲率中心移动,二者满足v = Mκγ的关系,其中M为迁移率。但在多晶体中,上述方程并不适用,需要重新定义二者之间的关系。本文使用高能衍射显微镜在800°C退火前后测量的三维取向图,测定了镍多晶中大约52,000个晶界的速度和曲率。出人意料的是,晶界速度与曲率没有相关性。相反,我们发现边界速度和指定晶界结晶学的五个宏观参数之间有很强的相关性。速度对晶界结晶学的敏感性可能是由于缺陷介导的晶界迁移或晶界能的各向异性所致。速度和曲率之间缺乏相关性可能是由于晶界网络施加的约束,这意味着需要一个新的晶界迁移模型。 4.上海大学钟云波课题组:共晶鱼骨状结构高熵合金的多级裂纹缓冲效应及其辅助的超高强韧性; 如果外力载荷不能被弹塑性的协调运动吸收,材料内部的将会出现裂纹知道失效。但是在自然界仿生材料中,具有梯度结构的材料往往表现出非常好的韧性,使得其广泛被应用。但是,具有良好韧性的材料往往塑性较差。本工作利用定向凝固方法制备一种共晶高熵合金(EHEA),成功地协调了裂纹容限和高延伸率之间的矛盾。该凝固合金具有梯度组织的鱼脊骨状结构,能够有效的逮捕裂纹并缓冲裂纹的扩展。这种效应在大量的低变形组织中引导稳定、持久的晶体形核和多个微裂纹的生长。相邻动态应变硬化特征的梯度分级缓冲有助于裂纹避免灾难性增长和渗透。自缓冲梯度鱼脊骨状结构材料具有超高的均匀拉伸伸长率(~50%),是传统的非缓冲EHEAs的3倍,同时不牺牲强度。 5.德国Shan Shi教授:宏观梯度网络纳米材料让金属又轻又强; 梯度结构在自然界中和工程化应用中非常常见。这种结构不尽具有优异的力学性能,还具有某些特定的功能。这体现在自然界中珍珠质或珐琅的断裂韧性,以及人造建筑的微尺度网络结构。在纳米尺度构建梯度结构有望进一步增强合金或者系统,但以这种方式构建的宏观体包含大量的支柱,需要一系列可扩展的制备方案,工艺复杂,成本高昂。在这项工作中,利用由去合金化的自组织过程可以很好的制成宏观层次网络纳米材料。这种共梯度结构在给定的固体分数下提高了合金的强度和刚度,并通过脱合金降低了固体分数。利用力学和原子模拟杠杆定律,可以从根本上揭示观测到的结果及其原理。由于力学杠杆定律和揭示了纳米尺度网络结构中梯度结构的系统性好处,本文所提出的材料方法可能成为未来轻质结构材料的发展提供新途径。 6.卢柯院士:解决了高温下金属中高原子扩散率带来的不稳定性的技术难题; 金属中的原子在加热时可以发生扩散,这种特性也是组织调控在热加工或者热处理过程中得以调控的基础。但是对于高温材料的发展来说,快速的原子扩散速率使得材料在服役过程组织和性能不稳定,又是高温材料的发展瓶颈。目前为止,单晶和重金属合金化是组织原子扩散的重要方法,但是这两种在实际应用中存在一定的局限性,在均匀的高温受热时原子的扩散仍然十分快速。到目前为止,有效抑制高温时原子扩散一直是重大的挑战。近日,沈阳金属研究所的卢柯院士在纳米晶Al-Mg合金中发现了受限晶体结构(Schwarz crystal structure),发现其可以有效的抑制高温处理时Al3Mg2 的析出,并阻碍晶界的迁移,从而抑制晶粒的粗化。更难能可贵的时,这种受限晶体结构在熔点之前温度基本能稳定的存在,其可以把晶界扩散的速率降低约7个数量级左右。这种受限晶体结构可以推广至其它合金体系,从而大大提高材料的高温使用温度和服役性能,例如蠕变,疲劳等。 7.吕昭平团队:一种生产高强高塑大块钢的简易方法; 超细晶钢具有非常优异的强度和断裂韧性,是非常重要的轻质和能源保护性材料。传统生产超细晶钢主要依赖于扩散性相变。但是超细晶钢通常展现出非常有限的加工硬化,从而其塑性非常差。基于此,来自英国谢菲尔德大学的W. Mark Rainforth和北科大的吕昭平教授团队强强联合,报道了一种大规模生产具有高强度和大塑性超细晶钢的新途径。本文以孪晶诱导塑性钢Fe–22Mn–0.6C为研究对象,通过往钢中掺杂3%Cu和4%Cu,利用共格无序富铜相的颗粒内纳米沉淀法(在30秒内)对再结晶结晶过程进行调控。快速而丰富的纳米沉淀物不仅阻止了新再结晶亚微米晶粒的生长,而且通过Zener钉扎机制增强了所得到的UFG结构的热稳定性。此外,由于其完全的共格性和无序性质,在外力载荷下,析出物与位错表现出微弱的相互作用。这种方法能够制备完全再结晶的超细晶结构,其晶粒尺寸为800±400纳米,而没有引入有害的晶格缺陷,如脆性颗粒和分离的边界。与未添加Cu的钢相比,超细晶结构的屈服强度提高了一倍,达到710MPa左右,具有均匀的延展性,其抗拉强度约为2000Mpa。这种晶粒细化的概念应该可以扩展到其他合金系统,制造过程可以很容易地应用到现有的工业生产线。 8.美国橡树岭国家实验室Ying Yang和Easo P. George:双重功能的纳米析出物同时强韧化Fe–Ni–Al–Ti体系中熵合金; 单相FCC结构的中熵或者高熵合金通常具有优异的塑性以及韧性,但是是非强度非常低。提高晶界,孪晶界密度或者引入固溶原子以及析出物都是非常有效的强化方式。通过orwan机制,第二相硬质粒子可以有效阻碍变形时位错的运动,从而提高材料的强度。但在之前的一些文献中报道,第二相粒子不仅能强化材料外,还可以抑制相变的发生,尤其是马氏体相变。本工作利用析出性强化Fe–Ni–Al–Ti中熵体系合金,展示了一种在单一合金中结合第二项强化和阻碍相变的具有双重功能的策略,极大的提高了材料的强塑性。本合金中调控出的Ni3Al (L12)型纳米沉淀物除了提供常规的基体强化作用外,还调节了其从fcc-奥氏体到体心立方(bcc)马氏体的转变,限制其在淬火后通过转变温度保持亚稳态fcc基体。在随后的拉伸试验中,基体逐渐转变为bcc-马氏体,使强度、加工硬化和塑性显著提高。这种纳米沉淀物的使用利用了沉淀强化和相变诱导塑性之间的协同作用,从而同时提高了拉伸强度和均匀延伸率。研究结果表明,协同变形机制可以通过改变沉淀物特征(如大小、间距等),以及相变的化学驱动力,在需要的时候被有意激活,以优化强度和延展性。
  • 《南科大李辉课题组在电解水制氢领域接连取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-15
    • 氢能作为一种清洁且极具发展潜力的新能源,受到了世界范围内的极大关注。各国纷纷将氢能作为未来能源发展的方向之一。电解水制氢技术是氢能产业链中关键的一环,甚至是瓶颈。以丰富的太阳能、风能和核能等可再生能源为基础,电解水制氢系统可作为纽带,将分散、不可控、难以经济利用的可再生能源转化为便于储运、可控利用、清洁环保的氢能,被视为通向“氢经济”的最佳途径。 南方科技大学材料系李辉教授回国后开始筹建以酸性电解水制氢(PEMelectrolysis)为主的“深圳市氢能技术重点实验室”,旨在填补国内在该领域的技术空白以及为实现氢能技术的产业化打造基础。目前,李辉团队在电解水制氢领域已经取得重大进展,基础科研方面,博士生冯其及张震同学相继在国际知名学术期刊《Applied Catalysis B: Environmental》(影响因子:11.69),《Journal of Materials Chemistry A》(影响因子:9.93),《ACSApplied Materials & Interfaces》(影响因子:8.09)以第一作者身份发表研究论文,并在《Journalof Power Sources》(影响因子:6.94)发表一篇综述文章。 李辉和学生讨论问题 在PEM电解水制氢中,酸性体系下阳极析氧催化剂多采用RuO2和IrO2,但是其价格非常昂贵,如何在保证高催化活性的条件下降低Ir、Ru的用量是目前迫切需要解决的问题。鉴于此,李辉课题组在A2Ru2O7−δ钌烧绿石氧化物结构的基础之上,利用Zn2 掺杂Y基钌烧绿石氧化物,得到Y1.85Zn0.15Ru2O7−δ阳极析氧催化剂,其在290mV的低电位下即可获得10 mA cm-2的电流密度,活性明显高于商用IrO2催化剂。除此之外,在PEM单电池测试中依然表现出较高活性(图1)。相关结果已发表在《Applied Catalysis B: Environmental》,题目为”Highlyactive and stable ruthenate pyrochlore for enhanced oxygen evolution reactionin acidic medium electrolysis”。 " 对于阴极析氢(HER)催化剂,寻找可替代铂且价格相对低廉的高效催化剂也是目前的研究热点。李辉课题组近日基于密排六方结构(hcp)Ru催化剂,通过掺杂过渡金属Mo元素,对hcpRu催化剂的氢结合能进行了有效调控,首次报道了hcpMoRu3合金结构(图2)在HER催化领域的优异性能,无论是三电极测试体系还是单电池测试下,均表现出出色性能,是有望替代Pt的新型催化。 相关结果已发表在《Journalof Materials Chemistry A》,题目为”Momodulation effect on the hydrogen binding energy of hexagonal-close-packed Rufor hydrogen evolution”。此外,为了进一步降低Ru的使用量,团队制备出低载量Ru修饰的Mo2C复合催化剂,并原位负载于三维多孔碳载体中(图3)。通过Ru对Mo2C电子结构的调控,有效改善了氢结合能,在酸性体系下相对单纯Ru与Mo2C材料,HER催化性能得到明显提升,而且其合成方法相对简单,相关结果已经发表在《ACSApplied Materials & Interfaces》,题目为”ScalableSynthesis of a Ruthenium-Based Electrocatalyst as a Promising Alternative to Ptfor Hydrogen Evolution Reaction”。 在PEM电解水电堆设计方面,李辉教授有着非常丰富的经验,从CCM(Catalyst-CoatedMembrane,简称CCM)、扩散层、双极板等关键部件的设计优化,再到单电池的组装与电堆的集成,该团队已经做出众多技术上的突破。针对电堆寿命衰减机理与衰减防控方面,李辉老师结合实际经验与相关文献,在知名期刊《Journalof Power Sources》上发表题为”Areview of proton exchange membrane water electrolysis on degradation mechanismsand mitigation strategies”综述文章。除此之外,该团队已经申请近二十篇相关专利,在电解水制氢领域已经掌握多项核心技术,其小型电解水电堆亦验收成功,各项性能均已达到相关指标要求。