《基于铟镓氮化物μLEDS的光电探测器阵列》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2019-12-29
  • 中国复旦大学和加拿大多伦多大学一直在探索在光电二极管(PD)模式下使用铟镓氮化物(InGaN)微发光二极管(μLED)阵列进行多输入、多输出(MIMO)可见光通信(VLC)。研究小组认为,这项技术可以实现显示器、快速数据传输和光电探测器的集成,通过信号本身或太阳能照明为光伏提供动力。

    由于更小的寄生电阻和电容,小尺寸的μLED有望产生更高的带宽。虽然人们已经对单μLED光电探测器进行了研究,但研究人员报告说,目前还没有出现这种器件的平行阵列结构。

    2x2 MIMO系统包括405nm紫外激光二极管(LDs)在1m自由空间距离上传输到用作光电探测器的450nm蓝色μLED结构上的传输。由于两个信号源之间的串扰减小,光束发散角减小,所以使用了激光二极管。

    光电探测器的直径在40μm到100μm之间变化。在零偏压下,光/暗电流比或“光敏度”为109级。这个高值是由于在零偏压为10-14A时暗电流很低,激光二极管的功率密度高达11.0W/cm~2。

    当器件的偏压为-5V时,较小器件的光/暗电流比为107,较大器件的光/暗电流比为108。研究人员说,这些值与最好的报道结果相匹配,并且“高于先前报道的具有光电导、p-i-n或异质结结构的GaN光电探测器的值”。该团队期望高值有利于设备的信噪比和最小检测限。

    当照度为11.0W/cm~2时,40μm直径μLED的短路电流为27.4μA。直径为100μm时,该值增加到188μA。开路电压均为2.6V,这种光伏效应可以用来为电路的其他部分供电。研究人员报告说,他们已经利用这些收集到的能量为660nm激光二极管供电。该团队认为,在危险和恶劣的环境中,这种设置有可能用于为系统供电。

相关报告
  • 《硅上的氮化镓微丝阵列用于紫外光电探测》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2018-12-02
    • 华南师范大学和北京大学开发了(100)硅上基于氮化镓(GaN)微丝阵列的紫外(UV)金属-半导体-金属(MSM)探测器。 研究人员使用自上而下的技术创建水平微丝,用300nm等离子体增强化学气相沉积(PECVD)二氧化硅层制备2英寸高电阻率(100)硅衬底,该二氧化硅层被图案化呈7μm硅间隙隔开的3μm条纹。用300nm AlN绝缘缓冲液的低压(100mbar)金属有机化学气相沉积(MOCVD)然后无意掺杂GaN制备微丝阵列。使导线与两个相隔20μm的图案化镍/金肖特基电极接触。 在2500μW/ cm2 325nm氦镉激光功率下,5.0V偏压,电流为2.71mA。暗电流为1.3μA,灵敏度为2.08×105%。研究人员声称,他们的紫外光电探测器在高紫外线灵敏度,高响应度和高EQE方面表现优于大多数单一GaN纳米/微电子和纳米线阵列光电探测器。
  • 《硅基单片砷化铟锑化物中红外光电探测器》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-02-24
    • 英国兰卡斯特大学和华威大学在硅片上集成了单片砷化铟锑(InAsSb)中红外(MIR)光电探测器。这些器件采用“II型”结构,砷化铝镓化合物电子阻挡势垒夹在n型InAs / InAsSb超晶格(SLs)之间,形成“nBn”能带结构,提供了一个电子屏障和一个空穴屏障。 研究人员发现,3-5μm波长的MIR光谱范围内,硅光子学和热电冷却检测系统具有成本效益。以大面积焦平面阵列和MIR集成光子电路形式的低成本超紧凑系统将在气体传感、防御和医疗诊断中得到应用。 MIR系列中常用的材料是碲化汞镉(HdCdTe)合金。其装置生产成本高,需要低温冷却以减少暗电流。而nBn结构采用位于窄带隙吸收和接触层之间的宽带隙阻挡层,阻挡多数载流子的流动,而不是少数载流子。小偏压几乎完全落在分隔光生载流子的屏障上,这几乎完全消除了窄间隙材料中的电场,这极大地抑制了与结相关的Shockley-Read-Hall (SRH)暗电流,因此与传统的p-i-n光电二极管相比可有更高的工作温度。 材料生长开始于在4°切割的硅(100)晶片上通过490℃固体源分子束外延(SS-MBE)生长的17单层AlSb成核。成核包括优化的90°界面错配位错阵列,以促进缺陷的横向而非垂直传播。 不匹配的间距约为3.35nm。 经测试发现硅上生长的大量InSb探测器和在GaAs上生长的InAs / GaSb SL情况有所改善。这可归因于改善的GaSb / Si缓冲层的结构质量,以及InAs / InAsSb SL nBn设计提供的降低的缺陷灵敏度。