《在地球生命开始之前,DNA和RNA的构建块可以一起出现》

  • 来源专题:生物安全网络监测与评估
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-04-11
  • 科学家们第一次发现了强有力的证据表明,即使在大约40亿年前地球上的生命进化之前,RNA和DNA也可能来自同一组前体分子。

    这项发现于4月1日发表在“自然化学”杂志上,表明地球上的第一批生物可能同时使用了RNA和DNA,就像所有基于细胞的生命形式一样。相比之下,流行的科学观点 - “RNA世界”假说 - 早期生命形式纯粹基于RNA,后来才进化为制造和使用DNA。

    “这些新发现表明化学家在调查地球上生命起源时受到RNA世界假设的严格指导可能是不合理的,”Scripps Research化学副教授Ramanarayanan Krishnamurthy博士说。 。

    Krishnamurthy和他的实验室与剑桥大学英国医学研究委员会分子生物学实验室的John Sutherland实验室一起研究,作为纽约Simons基金会生命起源协作的一部分。

    RNA(核糖核酸)和DNA(脱氧核糖核酸)在化学上非常相似,但化学家们从来没有能够证明这种物质在早期地球上如何转化为另一种,除非在早期生物体产生的酶的帮助下。部分由于缺乏将RNA与DNA连接起来的前期或“前生物”化学路径,该领域的研究人员倾向于认为更简单,更通用的RNA,是第一个基础。生命形式 - 或至少在DNA出现之前的生命早期阶段。 RNA能够像DNA一样存储遗传信息,能够像蛋白质酶那样催化生化反应,并且可能已经完成了在第一种生命形式中必需的基本生物学任务。

    虽然近几十年来生命起源的研究人员已经基本上接受了RNA世界的假设,但是Sutherland,Krishnamurthy,哈佛大学的Jack Szostak和其他人已经积累了证据证明RNA和DNA可能在第一种生命形式中或多或少都出现了。

    例如,在2017年发表的一项研究中,斯克里普斯研究中心的Krishnamurthy及其同事发现了一种似乎可能存在于生物前地球上的化合物,并且可以完成将RNA构建块连接成更大的链状RNA链的关键任务 - 并且可以为DNA和蛋白质的构建块做同样的事情。在这项新研究中,科学家们将这项研究的见解与萨瑟兰及其实验室最近对一种名为硫脲的化合物的研究结果相结合。后者可能在生命出现之前存在于地球上,并且可能是早期RNA的核苷结构单元的化学前体。该团队表明,在一些化学反应步骤中,这可能发生在前生物世界中,他们可以将这种RNA构建块的前体转化为DNA构建块 - 脱氧腺苷,形成字母“A” “在现代的四字母DNA代码中。或者,他们可以将硫脲转化为脱氧核糖,脱氧核糖与脱氧腺苷密切相关,也可能是早期DNA构建模块的前体。

    这一发现应该使科学家们更容易接受DNA和RNA一起出现并被包含在第一生命形式中的可能性。包括萨瑟兰在内的一些研究人员已经提出,RNA和DNA甚至可能混合在一起构成第一个基因。现在没有人知道这种有机体会自然发生,但Scripps Research的Peter Schultz博士及其同事最近发表的一篇论文描述了一种可以用RNA / DNA混合物制成的基因存活的工程菌。

    Krishnamurthy怀疑,无论生命如何,RNA和DNA各自的优势和缺点都会迅速地分解为今天所有细胞中相当严格的分工:用于稳定长期储存遗传信息的DNA,以及用于遗传信息的RNA它自己的一系列特殊任务,包括遗传信息的短期储存和运输以及蛋白质的制造。

    “现场开始意识到RNA和DNA最初可以混合在一起,但后来根据他们最擅长的事情进行分离,”Krishnamurthy说。

    ——文章发布于2019年4月1日

相关报告
  • 《Nature | 桥式 RNA 引导目标 DNA 和供体 DNA 的可编程重组》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-06-29
    • 2024年6月26日,Arc研究所的 Patrick Hsu 等人在 Nature 期刊发表了题为Bridge RNAs direct programmable recombination of target and donor DNA的文章。 在这篇论文中,研究团队描述了一种将可编程重组酶用于基因编辑的技术。这些重组酶由RNA引导,RNA则作为引导重组酶靶向位点和促进预选编辑的“桥”(Bridge)。这个RNA桥含有一个指定供体DNA序列的区域以及另一个指定基因组插入位点的区域。这两个区域都能通过独立重编程识别并结合不同的DNA序列或插入位点,并对不同类型的DNA重排使用一种通用机制。这个桥RNA比使用常规重组酶的现有基因编辑技术更易修饰,现有基因编辑技术需利用更复杂的蛋白质-DNA结合位点。 进化已经赋予了大量的酶来完成基因组重排和多样化的任务。这一过程使得新基因的出现和功能特化成为可能,并促进了免疫系统的发展以及病毒和可移动遗传元件(MGE)的机会性传播。MGE存在于所有生命形式中,通常通过转座酶、整合酶、归巢内切酶或重组酶进行移动。这些酶通常通过蛋白质-DNA相互作用识别DNA,可以根据其目标序列特异性进行广泛分类,范围从位点特异性(例如Cre酶、Bxb1重组酶)到半随机(例如Tn5酶和PiggyBac转座酶)。 插入序列(IS)元件是最基本的自主型可移动遗传元件之一,在细菌和古细菌中广泛存在。许多已鉴定的IS元件使用一种自编码的转座酶,通过蛋白质-DNA相互作用识别末端反向重复序列(TIR)。根据其同源性、结构和转座机制,IS元件已被分为约28个家族,但它们可以根据编码转座酶的保守催化残基进行粗略分类,这些包括DDE、DEDD和HUH转座酶,以及较少见的丝氨酸转座酶或酪氨酸转座酶。IS110家族元件是剪切-粘贴型可移动遗传元件,它们在转座机制中无痕地从基因组中切除自己,并生成环状形式。鉴于这一机制和生命周期,IS110转座酶更准确地可被描述为重组酶。虽然在其他IS家族中也发现了环状中间体,但IS110是唯一使用DEDD催化结构域的重组酶家族。IS110元件通常缺乏TIR,似乎以序列特异性的方式整合,通常针对微生物基因组中的重复序列。尽管IS110元件的DNA识别和重组机制尚不清楚,但之前的研究表明,位于重组酶ORF两侧的非编码区控制着重组酶的表达。 该研究显示,IS110编码一个重组酶和一个非编码的桥RNA(bridge RNA),桥RNA能够特异性地与编码的重组酶结合。这种桥RNA包含两个内部环状结构,编码核苷酸序列,能够与目标DNA和供体DNA(即IS110元件本身)配对。该研究进一步证明,靶向结合环和供体结合环可以独立地重编程,以指导两个DNA分子之间的特定序列重组。这种模块化特性使DNA能够插入到基因组目标位点,并能够进行可编程的DNA切除和逆转录。IS110桥重组系统将核酸引导系统的多样性扩展到了CRISPR和RNAi之外,提供了一种统一的机制,用于执行三种基本的DNA重排操作——插入、删除和倒位,这些操作对于基因组设计至关重要。 总的来说,该研究表明,桥RNA这种模块化特性,使得通过序列特异性的插入、倒位或删除的DNA重排机制得以通用化,从而提出了一种全新的基因组编辑技术。
  • 《Nat Biotechnol:开发出一种新的DNA合成方法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-02
    • 在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和联合生物能源研究所的研究人员发明了一种合成DNA的新方法。这种方法有望更容易地更快速地合成DNA,并不需要使用毒性化学物,而且可能是更准确的。鉴于具有更高的准确性,这种技术能够产生比当前的方法长10倍的DNA链。这些研究人员说,这种易用性可能会导致研究实验室中普遍存在的“DNA打印机”,类似于如今许多车间中的三维打印机。相关研究结果于2018年6月18日在线发表在Nature Biotechnology期刊上,论文标题为“De novo DNA synthesis using polymerase-nucleotide conjugates”。加州大学伯克利分校研究生Dan Arlow和德国达姆施塔特工业大学博士生Sebastian Palluk在这项研究中详细描述了这种方法。 Arlow说,“如果你是一名机械工程师,在你的商店里有一台3D打印机真的很棒,它可以在一夜之间打印出零件,这样你就可以在第二天早上测试它。如果你是一名研究人员或生物工程师,而且你有一种简化DNA合成的仪器,即'DNA打印机',那么你就能够更快地测试你的想法并尝试更多的新想法。我认为这将带来很多创新。” 联合生物能源研究所首席执行官、劳伦斯伯克利国家实验室资深科学家和加州大学伯克利分校化学与生物分子工程教授Jay Keasling说,“我个人认为Arlow和Palluk开发出的这种新方法可能会引发我们制造DNA方法的变革。” Palluk在Keithling实验室与Arlow一起研究DNA合成问题。作为合成生物学领域的先驱,Keasling和联合生物能源研究所的科学家们致力于将基因导入到微生物(主要是酵母和细菌)中来可持续地产生产品---药物、燃料,工业化学品,同时产生最少的毒性副产物和消耗最少的能源。 合成DNA是一项不断发展的业务,这是因为公司订购定制的基因,这样它们就能够在培养微生物的大缸中产生生物药物、工业酶或有用的化学物质。科学家们购买合成基因,并将它们导入到植物或动物体内或者尝试着开展新的基于CRISPR的疾病治疗方法。 一些科学家甚至提出将信息存储在DNA中,就像如今将数字数据存储在计算机硬盘中一样,这是因为一克DNA在理论上的存储容量相当于5000万张DVD,并且应当会在数百年内保持稳定。然而,这意味着要合成的DNA链数量比目前在生物技术行业中使用的DNA链数量大得多。 所有这些应用都要求这种DNA合成过程在数百万甚至数十亿个DNA分子拷贝中忠实地产生所需的核苷酸或碱基---DNA的构成单元(building block)---序列。 目前的DNA合成方法可追溯到1981年并使用来自有机化学实验室的技术,仅限于直接产生大约长200个碱基的寡核苷酸,这是因为随着合成长度的增加,这个过程中出现的不可避免的错误导致正确序列的产率非常低。为了组装一个小的基因,科学家们必须逐段合成它,每段大约长200个碱基,然后将这些片段拼接在一起。这很费时,通常需要多次尝试,而且有时完全失败。 此外,如果从Twist Biosciences公司和Integrated DNA Technologies(IDT)公司等合成公司订购,那么合成一个大约长1500个碱基的小基因的周转时间可能为两周,需要花费300美元,这就限制了科学家们能够承担得起的尝试进行基因调整的数量和他们开始能够开展实验的速度。 Keasling、Arlow和Palluk等合成生物学家经常需要一次性地将十几种不同的基因插入一种微生物中,使其产生所需的化学物质,然而每个基因都存在它自己的合成问题。 Palluk说,“作为一名德国学生,我参加了国际合成生物学竞赛iGEM,在那里我们试图让大肠杆菌降解塑料废物。但是我很快就意识到大部分研究时间都用于合成DNA,而不是开展实验来观察所获得的工程细胞是否能够降解塑料。这真地促使我研究DNA合成过程。” 化学DNA合成还需要使用特定类型的有毒性的活化DNA构成单元,并重复使用石油衍生溶剂进行清洗。Arlow说,如今,废物处理的问题和这种合成过程对湿度非常敏感使得它非常挑剔的事实都成为科学家们抛弃他们的个人寡核苷酸合成仪并将他们的DNA交给专业公司进行合成的理由。 借鉴免疫系统 这项新的技术依赖于在免疫系统细胞中发现的一种DNA合成酶,这种DNA合成酶天然地能够将核苷酸添加到水中的现有DNA分子上。这种技术有望提高精确度,并可能让DNA链的合成时间延长10倍,从而能够合成出长数千个碱基的DNA分子---一个中等基因的大小。 Palluk说,“我们已想出一种合成DNA的新方法,它利用了大自然用来制造DNA的机器。这种方法很有前途,因为酶已进化了数百万年才能完成这种精确的化学反应。” 细胞通常不会从头开始合成DNA;它们主要都是在已存在于它们中的DNA模板的基础上,利用大量不同的聚合酶进行DNA复制。然而,在20世纪60年代,科学家们发现了一种不寻常的聚合酶,它不依赖于现有的DNA模板,而是随机地将核苷酸添加到制造用于免疫系统中的抗体的基因上。这种被称作末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase, TdT)的酶在这些基因中产生随机变异,从而使得产生的抗体蛋白能更好地靶向前所未见的入侵者。 Paldk说,TdT同等地很好地添加所有四种DNA核苷酸,不会发生能够破坏所形成的DNA分子的副产物,并且它的添加速度是非常快的,如果让它随心所欲地发挥作用的话,它每分钟可将DNA延长大约200个碱基。 多年来,许多实验室都已尝试着利用这种酶来合成所需的DNA序列,但这种酶是很难控制的。一个关键要求就是弄清楚如何让这种酶在添加一个核苷酸后停下来,这样就能够一次添加一个碱基从而合成出所需的序列。所有之前的方案都是试图通过使用携带着阻止多次添加的特殊阻断基团的修饰核苷酸来实现这种控制。在给DNA分子添加一个受到阻断的核苷酸后,这些阻断基团就被移除,从而使得接下来的添加成为可能。 Palluk说,“这些方法与下一代测序(Next-Generation Sequencing, NGS)技术有很多共同之处”,他指的是用于读取基因序列的最先进技术,其工作原理是通过使用模板依赖性聚合酶依次地添加发出不同颜色荧光的阻断核苷酸,从而指出添加了这四种可能的碱基中的哪一种。尽管这些用于测序的DNA复制酶能够容纳添加到DNA分子上的核苷酸携带的阻断基团,但是TdT却不能做到这一点。当一个核苷酸正确地定位用于DNA合成反应时,TdT的活性位点太紧而不适合容纳它携带的阻断基团。 Arlow的想法是将一个未携带阻断基团的核苷酸牢固地连接到TdT上,这样在将这个核苷酸添加到延伸中的DNA分子后,这种酶仍然保持连接并且保护DNA链的末端免受进一步的核苷酸添加。在DNA分子延伸后,他们切断TdT与这个添加到DNA链上的核苷酸之间的连接物,将这种酶释放出来,并让DNA链的末端重新暴露出来以便接受进一步的核苷酸添加。 在他们的第一次试验---使用经过改造的TdT酶在10个循环中产生长10个碱基的寡核苷酸---中,这些研究人员证实他们的更快更简单的技术在每一步合成中几乎与当前的技术一样准确。 Arlow说,“当我们利用NGS技术分析合成产物时,我们能够确定大约80%的分子具有所需的长10个碱基的序列。这意味着,平均每个步骤的产率大约为98%,这对解决这个存在了50多年的问题的第一次尝试来说并不算太坏。我们希望达到99.9%的保真度,以便合成出全长DNA。” Palluk说,一旦达到99.9%的保真度,他们就能够一次性合成一种长1000个碱基的分子,产率在35%以上,对目前的化学合成技术来说,这是完全不可能实现的。 他说,“通过直接合成更长的DNA分子,将寡核苷酸拼接在一起的必要性以及由这个繁琐的过程产生的限制可能就会减少。我们的梦想是直接合成基因长度的序列,并在几天内将它们提供给科学家们。” Arlow说“我们希望这种技术将使得生物工程师更容易更快地弄清楚如何通过生物手段制造出有用的产品,这可能导致以一种需要更少石油的方式更可持续地生产我们在世界上所依赖的东西,包括服装、燃料和食品。”