锂硫电池质量轻、环境友好、储量丰富、价格低廉而且具有很高的理论容量和比能量密度,作为新一代储能器件引起广泛关注。然而锂枝晶和多硫化物穿梭效应使得该类电池循环能力和容量迅速衰减,成为了锂硫电池商业化应用的一大障碍。马里兰大学Chunsheng Wang教授研究团队使用高氟化度的共溶剂对高浓度电解质(HCE)系统进行稀释,制备出了一种新型的局部高浓度电解质(LHCE),展现出抑制锂枝晶生长以及多硫化物的穿梭效应双重功能,大幅增强了电池的循环稳定性。研究人员将乙二醇二甲醚(DME)和1H, 5H-八氟戊基-1,1,2,2-四氟乙基醚(OFE)按照不同比例混合(OFE/DME体积比为50:50、85:15和95:5,对应电解质分别命名为OFE50、OFE85和OFE95),并将适量的双(氟磺酰)亚胺锂(LiFSI)盐溶于混合溶剂配成1 mol/L的LHCE。系统研究了不同电解质组成对离子电导率、Li+转移数和粘度的物理化学性质影响。实验结果显示,随着OFE的比例增加,离子导电率降低而锂离子迁移数增高,同时电解液黏度有所下降,主要原因是锂盐难溶于OFE,相同体积溶液中电荷离子数随OFE比例的增加而减小。表明了OFE与锂离子的亲和力小,难以形成配合物,意味着电解液内部LiFSI-DME的配合物会更加稳定,使得这种LHCE电解液保持与高浓LiFSI-DME电解液相似的溶剂-溶质结构,即保持了类似的电化学特性。随后将上述电解液应用于锂硫电池并进行100 mA/g的放电电流密度下电化学循环测试。实验发现,基于OFE95电解质性能最优,循环150周后仍有775 mAh/g的比容量,平均库伦效率高达99.2%,远高于同样循环测试条件下的OFE50(314 mAh/g)和OFE85(633 mAh/g)两种电解质电池。随后将放电电流密度提升至2A/g和4A/g,OFE95电解质电池依旧可以获得 402和223 mAh/g放电比容量,表现出优秀的高倍率性能。为了探究电池性能改善的潜在缘由,研究人员进一步对循环后的电池拆解并对电极进行扫描电镜表征。结果发现,在OFE95电解质中Li金属电极表面循环前后基本没有变化仍然呈现光滑表面形态,但是在OFE85、OFE50电解质中的Li金属表面上可以明显观察到一些微小的Li枝晶生长,证明在OFE95电解质中形成了稳定的SEI薄膜成功地抑制了Li枝晶形成。此外,对多硫化物Li2S8在不同溶剂中的溶解性进行研究发现,随着OFE比例增加,其溶解性越来越小。即通过将惰性OFE共溶剂引入LiFSI-DME电解质中,逐步控制多硫化物的溶解,有效抑制了穿梭效应。该项研究采用高氟化度的溶液对高浓度电解质进行稀释,制备了新型的局部高浓度电解质,有效地克服了锂枝晶生长和多硫化物的穿梭问题,从而获得了高倍率和良好循环稳定性的锂硫电池,为设计高性能长寿命锂硫电池提供了全新的技术路径。相关研究成果发表在《Advanced Energy Materials》。