《使用 Cpf1 基因编辑纠正 DMD 基因突变》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-12-21
  • 这个研究成果是由德克萨斯大学的西南医学中心研究人员发表。

    该研究显示,使用来自 Prevotella 和 Francisella 1(Cpf1),这是一种通常使用的基因编辑 CRISPR 的相关蛋白 9(Cas9)的酶替代物,可以校正动物模型以及人细胞中的疾病相关病变。

    这个研究发表在科学进步杂志(Science Advances)上,可能对杜氏肌营养不良的治疗有突破性意义。

    在文章中,德州大学西南团队使用来自 DMD 患者纤维细胞的诱导多能干细胞(iPS),利用 CRISPR-Cpf1 来破坏外显子 51 中的早期终止密码子。

    外显子 51 导致大约 13%的患者的肌营养不良蛋白表达的丧失。

    这个基因编辑技术修复了来自细胞的诱导多能干细胞(iPS)和心肌细胞中的肌营养不良蛋白表达,并增加了心肌细胞的收缩力。

    Cpf1 首先有张锋在麻省理工学院和哈佛大学研究所的团队发现,被确定为 CRISPR 的相关内切核酶。由于 Cpf1 小于 Cas9,因此更容易被装入到运载工具中,具有针对不同基因序列的潜力。

    去年 12 月,专注基因编辑疗法的 Editas 医药公司(纳斯达克股票代码:EDIT)从 Broad 研究所授权获得了使用 Cpf1 进行 CRISPR 基因编辑的知识产权。

    与此同时,西南大学的研究组还针对肌营养不良蛋白外显子 23,将 Cpf1 的基因编辑 CRISPR 指导 RNA 和校正的核苷酸模板注射入外显子 23 引起 DMD 无义突变的小鼠受精卵。

    经过基因编辑的 24 只幼鼠中有 5 只的肌营养不良蛋白表达得以校正。这项技术恢复大多数肌肉纤维中的正常肌肉形态和肌营养不良蛋白表达,并增加肌肉力量。

    虽然以前的研究已经表明,采用 Cas9 的 CRISPR 基因编辑可以跳过或纠正小鼠中的突变型肌营养不良蛋白,在新文章中,作者表明,使用 Cpf1 的 CRISPR 在小鼠的肌营养不良蛋白外显子 23 上具有相似的基因组编辑效率。

  • 原文来源:https://www.biocentury.com/bc-extra/clinical-news/2017-04-12/cas9-alternative-cpf1-decreases-dmd-pathology
相关报告
  • 《CRISPR无疤基因编辑纠正遗传病中的DNA突变》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-12-12
    • 来自麻省大学医学院的一组研究人员提出了一种基因组编辑新策略,可以用于纠正小鼠模型中引起人类遗传疾病??的DNA突变。 这一研究成果公布在8月13日Nature Biotechnology杂志上,领导这一研究的是麻省大学医学院的高光坪教授。高教授是当今全球基因治疗领域的领导者之一,他早年毕业于四川大学华西药学院,从事基因治疗研究20余年,特别是在腺相关病毒(AAV)基因治疗研究领域取得了杰出成就。文章的第一作者为王丹(Dan Wang)博士。 高光坪教授表示,“这一进展将有助于研发可以用于治疗多种遗传疾病的新型治疗方案”,他们研究的第一步是构建了具有两种不同突变基因拷贝的小鼠,用以模拟患者的基因组成。 遗传性疾病的患者通常携带两种不同的突变基因拷贝,一种来自母亲,另一种来自父亲,然而,研究这些疾病的小鼠模型几乎总是带有相同的突变。 研究人员利用重组腺相关病毒载体将基因组编辑“机器”——Cas9/sgRNA系统传递到小鼠体内。这种基因组编辑系统能促进遗传物质的重组,产生两个新的基因拷贝,其中一个是无突变的,具有治疗作用的。对于许多遗传性疾病来说,一个功能基因拷贝就足以支持正常的细胞功能。 “我们证明了这种方法在两种疾病中发挥了作用:遗传性I型酪氨酸血症(Hereditary tyrosinemia type I, HT1),以及称为Hurler综合征的溶酶体贮积病,”王博士说。 遗传性I型酪氨酸血症是一种遗传性酪氨酸代谢障碍疾病。该疾病是由酪氨酸降解途径中的终末酶、延胡索酰乙酰乙酸水解酶(Fah,fumarylacetoacetate hydrolase)基因突变,导致酪氨酸代谢障碍而引起的常染色体隐性遗传病。 而Hurler综合征患者体内缺乏用于分解骨骼和组织大分子结构单元的一种关键酶。随着这些大分子不断累积,它们可损伤器官,导致一系列问题,包括脑部功能退化、心脏问题、听力和视力受损和面容丑陋等。如果没有接受酶替代疗法或血液或骨髓移植,先天性Hurler综合征儿童患者通常会在十岁前死亡。 最新这种治疗性基因组编辑策略具有几个优点,比如设计的灵活性,与不同突变的兼容性,因此可能适用于更多患者,并且更好的安全性——因为它避免了对靶基因产物引入不希望的突变,实现无疤基因编辑。 王博士表示希望新的治疗方法未来能适用于患有各种遗传疾病的患者。
  • 《广州生物院构建世界首例CRISPR/Cpf1基因编辑家兔和猪模型》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-04-24
    • 4月11日,中国科学院广州生物医药与健康研究院赖良学课题组在国际期刊Cellular and Molecular Life Sciences在线发表了新的基因编辑研究成果“Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems”。 CRISPR/Cpf1是一种新型RNA引导的基因编辑工具,与目前广泛应用的CRISPR/Cas9相比,有更高的特异性,脱靶率更低,并且Cpf1能识别基因组5’端的’TTTV’ PAM序列,扩大了CRISPR基因编辑系统的使用范围。但其靶向效率要低于Cas9,限制了Cpf1在基因编辑中的实际应用,目前仅在人类细胞系和小鼠胚胎中有过相关报道,还没用在大动物中实现有效的基因编辑。在本研究中,研究人员开拓性地利用哺乳动物转运RNA(tRNA)内源剪切机制,对Cpf1 引导RNA(gRNA)进行了改造,极大地提高了Cpf1在细胞系和动物胚胎中的基因编辑效率。课题组应用经改造的新型Cpf1 基因编辑系统,成功获得了首例Cpf1基因修饰家兔和猪模型。 衰老是目前生命科学领域研究热点之一,目前的哺乳动物模型只有小鼠模型。通过胚胎注射,对家兔的WRN基因进行了编辑,获得世界首例家兔成年早衰模型,为衰老研究提供新的动物模型。此外,通过Cpf1介导的体细胞基因编辑与细胞核移植技术,课题组还获得了两种基因编辑猪模型,经点突变PLNR14del基因导致的扩张型心肌病猪模型以及DMD基因敲除形成的杜氏肌营养不良症猪模型,以上两种模型猪为研发相应疾病治疗的新的治疗手段,包括药物治疗、基因治疗和干细胞治疗提供了理想的大动物疾病模型。