《地环所揭示人为黑碳气溶胶及温室气体对亚洲季风影响的不同机制》

  • 来源专题:大气污染防治
  • 编译者: APC
  • 发布时间:2020-11-03
  • 人类活动所引起的大气中温室气体及气溶胶含量的增加是造成人类世气候和环境显著变化的重要强迫因子。黑碳气溶胶作为大气溶胶的重要组成成分,主要产生于化石燃料和生物质燃料燃烧过程。它可直接通过吸收可见光到红外波段范围内的太阳辐射加热大气,是除温室气体以外对引起全球变暖最大的贡献者。近年来由于人口增长和经济发展使得亚洲成为世界上黑碳排放的主要源区。观测和模拟结果都表明黑碳气溶胶对亚洲区域辐射收支、大气环流和水循环有重要影响,但由于黑碳气溶胶复杂的时空特性以及气溶胶 - 辐射 - 云之间的非线性相互作用,它对亚洲夏季风的影响还存在很大的不确定性,而且人们对其作用机理还缺乏深入的认识和理解。最近,中国科学院地球环境研究所解小宁副研究员等利用降水变化的驱动和响应模式比对计划( Precipitation Driver Response Model Intercomparison Project , PDRMIP )框架下的 9 个全球海 - 气耦合模式试验结果,研究了 10 倍黑碳气溶胶和 2 倍 CO2对亚洲夏季风和降水的影响,对比分析了黑碳与CO 2含量增加引起的区域气候环境效应的异同。 PDRMIP 多模式集成结果显示: (1) 黑碳气溶胶和CO 2都可以显著的增加亚洲季风区夏季有效降水量,分别增加 13.6% 以及 12.1% 。但是,黑碳气溶胶引起的有效降水量增加在不同模式间存在着更大的差异 ( 图 1) 。 (2) 利用水汽收支分析显示,黑碳气溶胶引起的亚洲季风区有效降水量增加主要是加强的季风环流引起的动力项增加,而二氧化碳引起的有效降水量增加则是增加的水汽相关的热力项增加 ( 图 2a) 。 (3) 从大气环流角度,黑碳气溶胶引起的大气低层季风环流以及向上垂直风速都有着更加明显的增加,同时伴随着大气高层西风急流轴显著性北移 ( 图 3) 。而二氧化碳引起季风环流以及西风急流轴的变化则不显著。黑碳气溶胶及CO 2引起亚洲夏季风变化的机制差异主要来源于不同强迫引起的温度反馈 ( 图 2b) 。黑碳气溶胶的增加直接加热中纬度对流层上层大气,增加高层南北海陆热力梯度,加强季风系统动力环流。而二氧化碳主要加热赤道对流层上层大气,使得高层海陆梯度明显减小,抑制季风系统动力的发展。这种不同强迫下控制机制的差异,将会有助于我们理解未来全球变暖以及人为污染双重影响下亚洲季风的变化。该研究得到国家自然科学基金重大项目 (41991254) ,中国科学院战略性先导科技专项 (XDB40030100) 及中国科学院西部之光等项目的共同资助,相关成果发表在《 Atmospheric Chemistry and Physics 》期刊上。原文详见: Xie, X., Myhre, G., Liu, X., Li, X., Shi, Z., Wang, H., Kirkev?g, A., Lamarque, J.-F., Shindell, D., Takemura, T., and Liu, Y., 2020: Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases, Atmospheric Chemistry and Physics, 20, 11823–11839, https://doi.org/10.5194/acp-20-11823-2020.文章链接:https://doi.org/10.5194/acp-20-11823-2020 图 1. 人为黑碳气溶胶和 CO 2引起亚洲夏季风有效降水量 P-E 的变化 ( 单位: mm day-1) 。 (a, b) 亚洲季风区域即蓝色实线区域内空间平均值以及多模式的平均值 MMM ; (c, d) 多模式平均有效降水变化的空间分布。 图 2. (a) 人为黑碳气溶胶和 CO 2引起的水汽收支变化 q budget (mm day-1) ,包括夏季有效降水量变化 △ P-E ,热力项 △ TH ,动力项 △ DY ,以及其余项 △ Res 。 (b) 亚洲与海洋海陆南北梯度的变化 △ MLOTG ( 摄氏度 ) 。 图 3. (a, c, e) 人为黑碳气溶胶和 (b, d, f) CO 2引起的对流层低层以及高层的大气环流变化,包括 850 hPa 风矢量 ( △ UV) , 500 hPa 垂直风速 ( △ Omega) ,以及 200 hPa 的西风 ( △ U200) 。

相关报告
  • 《亚洲夏季风对于平流层气溶胶有重大影响》

    • 来源专题:大气污染防治
    • 编译者:APC
    • 发布时间:2017-11-12
    • 近期卫星观测在亚洲夏季风(ASM)期间,在亚洲对流层附近确定气溶胶层(ATAL)增强。由人类活动的有机物和硫酸盐组成的,经济增长和人口的增长增加了平流层低层人造污染物的数量。NOAA开发的印刷光学粒子光谱仪(POPS)仪器可以准确测量气溶胶性质,并且比其他具有相似灵敏度的仪器更易于部署。研究人员在2015年8月在中国昆明的气象气球测量了气溶胶颗粒数量和尺寸分布。
  • 《科学家利用大型波浪水槽揭示人类对海洋和气候的影响》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2019-09-20
    • 位于斯克里普斯海洋研究所(Scripps)的一个篮球场大的波浪通道促进了人类污染对气候影响的研究。NSF环境化学气溶胶影响中心(CAICE)开展的海洋喷雾化学和粒子进化项目—SeaSCAPE是一项研究复杂的海洋-大气相互作用的新研究项目。该项目在33米(108英尺)长波浪水箱中使用最先进的设备并实时监控,复制海洋的生物、物理和化学环境,旨在了解人类污染如何与海洋排放的气体和气溶胶相互作用和反应,并最终影响云的形成、空气质量和气候。 当海浪破碎时,会将含有盐和其他生物材料(如细菌和病毒)的海浪喷雾气溶胶发射到大气中。此外,气体从海洋中释放出来,可以反应并形成更多的气溶胶。CAICE科学家有兴趣研究海洋喷雾气溶胶-微小的生物和无机物质-以及其他海洋气溶胶如何影响海洋上空的云层形成,并在调节地球温度方面发挥重要作用。 研究人员用Scripps码头收集的海水填充波浪水槽,使用定制的桨叶产生连续波;然后海水中加入营养物质,形成浮游植物;再利用各种先进的设备来测量在浮游植物生命周期过程中产生的气体和颗粒的成分。清洁空气被泵入水槽,从而可以对活性气体和颗粒进行隔离研究。这使得研究人员能够了解波浪破碎、颗粒和气体排放到大气中时发生的化学反应。 受控设置还允许研究人员连续测量海水中的温度、溶解氧、二氧化碳和叶绿素等所有影响藻类繁殖的关键组分。随着每次波浪破碎,气溶胶和颗粒从顶部空间被吸出并进入一系列连接的仪器,包括多个用于分析和表征的质谱仪。海水以及空气中的颗粒和气体也被收集用于更详细的离线分析,例如识别空气和水中存在哪些微生物。 SeaSCAPE研究员Michael Alves说,海洋和大气化学可能非常复杂,以至于实地研究有时只能提供一小部分信息,但这个实验是不同的。实验发现,当排出的气体发生反应时,它们会粘附在预先存在的颗粒上,或者可以制造新的颗粒,这些过程会改变海洋大气的成分。 CAICE主任、加州大学圣地亚哥分校大气化学学院杰出主席Kim Prather希望这项实验能够帮助确定人类活动中的哪些污染物,例如汽车尾气或野火引起的烟雾,对于寻求应对气候变化的政策制定者来说,对环境最重要的信息是最不利的。她说,希望这项研究能够改善气候模型,因为目前的计算机模拟并没有充分说明海洋的影响。 未来对海洋和大气的研究将通过由NSF资助的Scripps海洋大气研究模拟器(SOARS)来完成,该仪器预计于2021年完成建造,届时将以前所未有的精确度模拟海洋,在实验室环境中捕捉海面上的风、波浪、微生物海洋生物和化学的相互作用。 (傅圆圆 编译) 图片源自网络