《岩爆机制及其控制》

  • 来源专题:岩土力学与工程信息资源网
  • 编译者: 李娜娜
  • 发布时间:2024-12-17
  • 随着岩体工程向深部发展,开挖引发的围岩大变形和强冲击诱发的动力破坏日益严峻。岩爆作为深部地下工程中常见的一种强动力灾害,被称为岩土工程界的“癌症”,其具有突发性特点,难以有效预报及防治,严重地威胁着施工人员的安全和设备的正常运行。

    何满潮院士通过对比岩石在真三轴卸荷和单轴压缩这2种应力路径下的储能差异,对岩爆多余能量机制进行探讨。首先,根据岩爆诱发机制的不同,将岩爆分为由应力集中导致的应变型岩爆和扰动诱发的冲击岩爆。然后,模拟开挖诱发的不同类型岩爆的应力路径进而在室内再现各种岩爆现象,并对其机制进行研究,自主研发3套真三轴岩爆模拟试验系统:第1代应变岩爆试验系统、第2代应变岩爆试验系统、冲击岩爆试验系统。同时,在实验室内成功模拟不同类型的岩爆:巷道应变岩爆、巷道交叉点应变岩爆、3个临空面矿柱应变岩爆、矿柱应变岩爆以及动荷载诱发的冲击岩爆。最后,为有效控制岩爆灾害,提出开挖补偿法,并研发具有负泊松比效应的宏观和微观NPR锚杆/索。工程实践证明,NPR锚杆/索能提供高预应力来补偿开挖造成的应力损失,同时具备良好的延展性和吸能效果,可为岩爆灾害的防治提供有效途径。

    研究指出要加强岩爆试验力学系统的研发,深入研究不同地质和工况条件下岩爆发生机制,可为岩爆源头治理和预警提供理论基础;同时,进一步研发抗冲击吸能NPR锚杆和NPR金属支架支护技术,并提高NPR支护技术施工的机械化和自动化水平,可更大程度地保障施工人员的安全。研究成果发表于《隧道建设(中英文)》。

  • 原文来源:何满潮,李杰宇,刘冬桥,等.岩爆机制及其控制[J].隧道建设(中英文),2024,44(07):1321-1336.
相关报告
  • 《岩爆机制及其控制》

    • 来源专题:岩土力学与工程信息资源网
    • 编译者:李娜娜
    • 发布时间:2024-12-18
    • 随着岩体工程向深部发展,开挖引发的围岩大变形和强冲击诱发的动力破坏日益严峻。岩爆作为深部地下工程中常见的一种强动力灾害,被称为岩土工程界的“癌症”,其具有突发性特点,难以有效预报及防治,严重地威胁着施工人员的安全和设备的正常运行。 何满潮院士通过对比岩石在真三轴卸荷和单轴压缩这2种应力路径下的储能差异,对岩爆多余能量机制进行探讨。首先,根据岩爆诱发机制的不同,将岩爆分为由应力集中导致的应变型岩爆和扰动诱发的冲击岩爆。然后,模拟开挖诱发的不同类型岩爆的应力路径进而在室内再现各种岩爆现象,并对其机制进行研究,自主研发3套真三轴岩爆模拟试验系统:第1代应变岩爆试验系统、第2代应变岩爆试验系统、冲击岩爆试验系统。同时,在实验室内成功模拟不同类型的岩爆:巷道应变岩爆、巷道交叉点应变岩爆、3个临空面矿柱应变岩爆、矿柱应变岩爆以及动荷载诱发的冲击岩爆。最后,为有效控制岩爆灾害,提出开挖补偿法,并研发具有负泊松比效应的宏观和微观NPR锚杆/索。工程实践证明,NPR锚杆/索能提供高预应力来补偿开挖造成的应力损失,同时具备良好的延展性和吸能效果,可为岩爆灾害的防治提供有效途径。 研究指出要加强岩爆试验力学系统的研发,深入研究不同地质和工况条件下岩爆发生机制,可为岩爆源头治理和预警提供理论基础;同时,进一步研发抗冲击吸能NPR锚杆和NPR金属支架支护技术,并提高NPR支护技术施工的机械化和自动化水平,可更大程度地保障施工人员的安全。研究成果发表于《隧道建设(中英文)》。
  • 《研究人员揭开了控制细胞大小的机制》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-05-27
    • 加州大学圣地亚哥分校的一个多学科团队与细菌合作,为科学中一个长期存在的问题提供了新的见解:控制细胞大小的潜在机制是什么? 大约五年前,由加州大学圣地亚哥分校的生物物理学家Suckjoon Jun领导的一个小组发现,细胞大小由一个称为“加法器”的基本过程控制,这个过程指导细胞从出生到固定的增加大小。师。然而,关于这个过程背后的机制仍然存在着神秘感,导致了科学的竞争。 他们在5月16日出版的“当代生物学”杂志上发表了他们的着作,主要作者方伟斯和纪尧姆·勒特雷特及其同事描述了加法器的内部运作。他们发现这个过程,也被称为“大小稳态”,归结为两个必需的组成部分:用于细胞分裂的特定生物成分的平衡合成,包括某些蛋白质;以及当足够数量的此类蛋白质积累时启动加法器过程的临界阈值。科学家说,加法器过程遵循这两个要求。 “这是一种非常强大的机制,因为每个细胞都能保证达到其目标细胞大小,无论它是大的还是小的,”Jun说,他是生物科学部分子生物学和物理科学系的副教授。物理学。 “最重要的是,我们发现加法器完全由参与细胞分裂的一些关键蛋白决定。” 虽然研究人员发现了细菌大肠杆菌(E. coli)和枯草芽孢杆菌(枯草芽孢杆菌)的机制,但他们认为这一过程在许多生命形式中都是一般的。 Jun表示,由生物学家,物理学家和工程师组成的研究小组在多年尝试一系列调查方法和实验方法后破解了加法器案例。 “细胞大小稳态是一个基本的生物学问题,据我们所知,这是我们第一次最终理解它的机械起源,”Jun说,“我们无法用纯物理学或纯生物学来解决这个问题。多学科方法。“ 研究小组现在正在调查加法器的定量和机制框架是否适用于其他模型,如酵母和癌细胞。 除了Si,Le Treut和Jun之外,该论文的共同作者还包括加州大学圣地亚哥分校物理系的John Sauls;圣路易斯华盛顿大学的Stephen Vadia和Petra Anne Levin。 该研究的资金由Paul G. Allen家庭基金会,皮尤慈善信托基金,国家科学基金会职业资助(MCB-1253843)和美国国立卫生研究院(R01 GM118565-01和R35-400 GM127331)提供。 ——文章发布于2019年5月17日