《Nature丨SHR 和 SCR 在细胞周期早期协调根系模式和生长》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-02-03
  • 2024 年 1 月31日,杜克大学的研究人员在Nature杂志上发表了题为SHR and SCR coordinate root patterning and growth early in the cell cycle的文章。

    在多细胞生物的发育过程中,精确控制细胞分裂对于适当的模式化和生长至关重要。产生新组织模式的形成性分裂与促进生长的增殖分裂的协调知之甚少。SHORTROOT (SHR) 和 SCARECROW (SCR) 是拟南芥根干细胞生态位中形成分裂所需的转录因子。

    该研究表明细胞周期早期的SHR和SCR水平决定了分裂平面的方向,导致形成性或增殖性细胞分裂。研究人员使用 4D 定量、长期和频繁(每 15 分钟一次,最多 48 小时)光片和共聚焦显微镜来探测活根单细胞内 SHR 和 SCR 的动力学。使用SHR诱导系统直接控制它们的动力学使我们能够挑战SHR-SCR基因调控网络的现有双稳态模型,并确定对挽救SHR突变体形成分裂至关重要的关键特征。SHR 和 SCR 动力学与双稳态系统的预期行为不一致,形成分裂只需要细胞周期早期存在的低瞬时水平。这些结果揭示了一种未表征的机制,通过该机制,发育调节因子直接协调模式和生长。

相关报告
  • 《Nature | 另一种细胞周期协调多缘细胞分化》

    • 编译者:李康音
    • 发布时间:2024-05-31
    • 2024年5月29日,加州大学旧金山分校的研究人员在 Nature 期刊发表了题为An alternative cell cycle coordinates multiciliated cell differentiation的文章。 典型的有丝分裂细胞周期协调 DNA 复制、中心粒复制和细胞分裂,从一个细胞生成两个细胞。有些细胞,如哺乳动物滋养层巨细胞,利用细胞周期变体(如内循环)绕过有丝分裂。在哺乳动物呼吸道、脑室和生殖道中发现的分化多纤毛细胞是有丝分裂后的细胞,但会产生数百个中心粒,每个中心粒都会成熟为基底体,并核化出运动的纤毛。一些细胞周期调节因子与多纤毛细胞分化的特定步骤有关。 该研究展示了分化中的多纤毛细胞将细胞周期调节因子整合到一个新的替代细胞周期中,称之为多纤毛周期。多纤毛周期重新调配了许多典型的细胞周期调节因子,包括细胞周期蛋白依赖性激酶(CDKs)及其同源的细胞周期蛋白。例如,细胞周期蛋白 D1、CDK4 和 CDK6 是有丝分裂 G1 到 S 过程的调节因子,它们是启动多纤毛细胞分化所必需的。多细胞分化周期会放大典型细胞周期的某些方面,如中心粒合成,并阻断其他方面,如 DNA 复制。E2F7是典型S-G2进展的转录调节因子,在多纤化周期中高水平表达。在多纤毛周期中,E2F7 直接抑制编码 DNA 复制机制的基因的表达,并终止类似 S 期的基因表达程序。E2F7的缺失会导致多纤毛细胞DNA合成的异常获得和多纤毛周期进展的失调,从而破坏中心粒的成熟和纤毛的生成。该研究的结论是,多纤毛细胞使用另一种细胞周期来协调分化,而不是控制增殖。
  • 《Nature | 胞质钙稳态协调植物生长和免疫平衡》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-02-29
    • 2024年2月28日,加州大学伯克利分校栾升教授课题组在Nature期刊在线发表题为 Mechanisms of calcium homeostasis orchestrate plant growth and immunity 的研究论文。 近年来,研究人员已经深入研究了植物免疫过程中的Ca2+ 流入细胞质(即钙信号起始)的钙通道蛋白及其激活机制。然而,人们对于Ca2+流出机制以及Ca2+ 稳态调节(即钙信号消退)的了解依然非常有限,并且对这些机制如何影响植物的生长和免疫尚不清楚。 该研究首次报道了拟南芥中两条完整的信号传导途径,它们都汇聚于激活液泡膜上的钙氢逆向转运体(CAXs,Ca2+/H+ antiporter),在不同的生理条件下清除植物细胞质内过量的Ca2+。第一条途径发生在植物正常生长于土壤过程中,是在响应外部Ca2+水平时激活的,由定位于液泡膜的钙感受器蛋白CBL2/3以及相互作用的蛋白激酶CIPK3/9/26形成的复合体介导,它们通过磷酸化CAX1/3自抑制结构域中的一组丝氨酸簇(S-cluster)来激活CAX1/3,从而降低周围环境中的钙对植物潜在的毒害。第二条途径是发生在植物遭遇微生物入侵时,由PTI相关的免疫信号激活,涉及免疫受体复合物FLS2–BAK1以及相关的细胞质激酶BIK1和PBL1,它们通过磷酸化CAX1/3中相同的S-cluster来促进细胞质Ca2+ 的清除并调节免疫中的钙信号。这两条信号转导途径前者是Ca2+ 依赖性的(CBL–CIPK-CAX/3)而后者是钙非依赖性(FLS2–BAK1–BIK1/PBL1-CAX/3),它们通过在不同的生理条件下调节细胞质Ca2+ 稳态,通过激活水杨酸合成和信号途径,来实现植物生长和免疫的平衡。 无论生长还是防御都是植物在其生命周期中需要做出的最常见抉择。该研究揭示了Ca2+稳态的调节可以作为植物能在生长和防御之间进行转换的分子开关机制之一。在正常土壤生长条件下,植物通过Ca2+–CBL–CIPK–CAX1/3通路将Ca2+区域化到液泡内,以维持 [Ca2+]cyt 的静息态水平。这条途径代表了一种依赖Ca2+反馈循环的自主调控机制以适应自然环境中的钙水平。此外,在PTI的免疫反应中,FLS2—BAK1—BIK1/PBL1通路同样激活了CAX1/3,从而塑造了免疫中的钙信号。这其中,BIK1/PBL1对钙信号具有双重功能:一方面磷酸化激活CNGC2/4通道起始钙信号;另一方面,磷酸化激活CAX1/3转运蛋白解除钙信号。CAX1/3的破坏会导致持续的[Ca2+]cyt升高,从而触发水杨酸依赖的免疫并导致生长抑制。该研究不仅在植物钙信号转导的领域具有重要的理论价值,而且对培育新型高产抗病农作物也具有潜在的指导意义。