《Cell Discov | 上海药物所合作揭示HDAC1/2/3为组蛋白去琥珀酰化酶》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-08-21
  • 赖氨酸琥珀酰化修饰 (Lysine succinylation,Ksu)是以琥珀酰辅酶A为底物受酶或非酶催化形成的赖氨酸酰化修饰家族的重要成员之一,广泛存在于各个物种间,主要分布在细胞线粒体、细胞核和细胞质中。目前,已报道KAT2A和HAT1作为琥珀酰化转移酶,分别催化H3K79su和H3K122su,而CBP/p300也被报道参与催化组蛋白琥珀酰化,并且组蛋白琥珀酰化修饰可以促进转录表达、肿瘤细胞增殖和发展等。同时,SIRT5是目前已报道主要的去琥珀酰化酶。SIRT5是Sirtuin家族NAD+依赖的去酰化酶,主要存在于线粒体中,SIRT5缺失会导致线粒体蛋白高度琥珀酰化,参与调控脂肪酸代谢和TCA循环等生物过程。最近发现SIRT7可以去除H3K277su,但是主要的组蛋白去琥珀酰化酶是否是Sirtuin家族尚不清楚。
      为解决上述问题,华东师范大学翁杰敏教授、魏伟副研究员与中国科学院上海药物研究所黄河研究员于2023年8月15日在Cell Discovery杂志在线发表了题为“HDAC1/2/3 are major histone desuccinylase critical for promoter desuccinylation”的研究论文,首次揭示I类HDACs (HDAC1/2/3) 而非Sirtuin家族是主要的组蛋白去琥珀酰化酶,参与调控基因启动子区域的组蛋白琥珀酰化修饰从而影响转录调控。
      为了探究主要的组蛋白去琥珀酰化酶是SIRTs还是HDACs,研究人员在不同细胞系中使用广谱HDACs抑制剂TSA和广谱SIRTs抑制剂NAM处理,发现TSA处理可以显著增强不同细胞系中整体组蛋白琥珀酰化修饰水平,而NAM处理对整体组蛋白琥珀酰化修饰影响不大,仅增强H3K122su修饰水平,与之前报道SIRT7负责去除H3K122su相符。上述结果表明,HDACs负责调控更广泛的组蛋白琥珀酰化位点,而SIRTs可能只负责调控某个特定的组蛋白琥珀酰化位点,如H3K122su。此外,通过分离细胞核、细胞质和线粒体蛋白发现,HDACs去琥珀酰化底物蛋白主要是组蛋白,而SIRTs尤其是SIRT5可能主要负责线粒体蛋白的去琥珀酰化。
      由于MS275(HDAC1/2/3选择性抑制剂)和TSA处理后组蛋白琥珀酰化增强效果相近,研究人员猜想HDAC1/2/3是HDACs中主要的组蛋白去琥珀酰化酶。通过单独敲除HDAC1、HDAC2或HDAC3发现,组蛋白琥珀酰化修饰未见显著升高,说明HDAC1/2/3可能存在代偿作用。然而,共敲除HDAC1/2/3可以显著增强组蛋白琥珀酰化修饰,包括H3K14su和H3K23su。过表达HDAC1/2/3而非其酶失活突变体显著降低组蛋白琥珀酰化修饰,包括H3K23su。此外,通过体内纯化HDAC1/2/3进行体外酶活实验发现,HDAC1/2/3展现显著的组蛋白去琥珀酰化能力,而酶失活突变体HDAC1/2/3不能。上述结果表明HDAC1/2/3是哺乳动物细胞中主要的组蛋白去琥珀酰化酶。
      最后,研究人员通过对是否经过TSA处理的细胞采用Pan-Ksu和H3K23su抗体进行ChIP-seq来获取整体的组蛋白琥珀酰化基因组分布情况。研究发现,TSA处理可以显著增强基因启动子区域的琥珀酰化水平。同时,结合转录组分析发现TSA处理后转录上调的基因,其启动子区域组蛋白琥珀酰化经TSA处理后也增强,说明HDAC1/2/3可以通过调控基因启动子区域组蛋白琥珀酰化水平参与转录调控,并且组蛋白琥珀酰化水平与转录激活正相关。
      综上,该研究首次揭示HDAC1/2/3而非SIRTs是主要的组蛋白去琥珀酰化酶,并首次在体外验证了HDAC1/2/3强大的组蛋白去琥珀酰化能力。除此之外,该研究还发现HDAC1/2/3通过影响基因启动子区域的琥珀酰化水平调控基因转录,为组蛋白琥珀酰化的生理功能和病理研究提供了新思路。
      华东师范大学翁杰敏教授、魏伟副研究员和上海药物所黄河研究员为本文的共同通讯作者。华东师范大学附属芜湖医院博士后李佳伦、华东师范大学生命科学院博士研究生卢璐和中国科学院上海营养与健康研究所博士研究生刘玲玲为该论文的共同第一作者。本研究得到国家自然科学基金委、上海市科技委员会资助。
      全文链接:https://www.nature.com/articles/s41421-023-00573-9

  • 原文来源:http://www.simm.ac.cn/web/xwzx/kydt/202308/t20230816_6860009.html
相关报告
  • 《上海药物所黄河课题组合作揭示蛋白β-羟基丁酰化修饰关键调控因子》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-03-04
    • 近日,中国科学院上海药物研究所黄河课题组与芝加哥大学赵英明教授团队合作,通过全面分析哺乳动物细胞中的Kbhb底物,系统揭示了新型蛋白动态修饰β-羟基丁酰化(Kbhb)的关键调控因子。该研究成果于北京时间2月25日在线发表于Science Advance杂志。 细胞代谢为生命过程提供能量,同时代谢物可通过与蛋白质发生共价结合来发挥信号传导功能。虽然许多代谢物在代谢通路中的作用广为人知,但其介导细胞信号调控的功能仍有待探索。酮体(包括丙酮,乙酰乙酸和β-羟基丁酸)为脂质代谢产物,在葡萄糖缺乏的状态下,肝脏产生的β-羟基丁酸可以用作多种组织的替代能源。越来越多的证据表明,β-羟基丁酸还具有供能之外的作用。芝加哥大学赵英明教授团队早先的研究证实,β-羟基丁酸可作为一种新型组蛋白翻译后修饰Kbhb的前体,介导转录调控,但其关键的调控酶及底物谱尚不明确。   基于上述问题,合作团队利用基于p300催化酰化反应的体外重组转录系统,考察了p300对Kbhb的催化作用。结果表明,p300可以在重组染色质底物上催化组蛋白Kbhb并激活体外转录。进一步的细胞水平实验证实了p300可以在细胞内催化Kbhb,表明p300是Kbhb的“书写器”。另一方面,研究人员通过对HDAC1-11和SIRT1-7进行体外筛选,发现HDAC1-3和SIRT1-2具有体外去除Kbhb的催化活性;通过进一步的多方式细胞水平筛选,团队发现HDAC1和HDAC2是细胞内Kbhb的“擦除器”。 此前研究中发现的Kbhb位点仅限于组蛋白,而在本研究中,科研人员发现β-羟基丁酸可剂量依赖性地升高全细胞蛋白Kbhb水平。通过深入的Kbhb蛋白质组学分析,研究团队在1397个蛋白质中鉴定出3248个独特的Kbhb修饰位点。对Kbhb修饰底物的分析表明,该修饰可能参与了多种细胞功能,例如染色质重塑,转录调控和DNA修复。   本项研究探索了调控Kbhb的关键酶,拓展了Kbhb调控的蛋白质底物谱,阐释了Kbhb耦合代谢物与多种细胞进程的新机制、新途径,为进一步揭示Kbhb修饰在各种生理、病理条件下的作用提供了理论依据。 上海药物所黄河研究员和芝加哥大学赵英明教授为本文的共同通讯作者,上海药物所黄河研究员和芝加哥大学Di Zhang博士为本文的共同第一作者,洛克菲勒大学Robert G. Roeder课题组和哈佛大学Philip A. Cole课题组参与了该课题的研究。本研究得到国家自然科学基金委、上海浦江人才计划和美国国立卫生研究所的基金资助。
  • 《Cell Discov | 上海药物所揭示内源性速激肽及类似物结合NK3R的激活和选择性的分子机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-07-10
    •  速激肽是一种广泛分布于神经系统和免疫系统中的神经肽,通过激活三种速激肽受体(tachykinin receptor, NK1-3R)调控疼痛、血管舒张和激素释放等多种生理功能。三种内源性速激肽(SP、NKB及NKA)以不同的亲和力及较低的选择性激活三种速激肽受体NK1R、NK2R及NK3R。聚焦速激肽信号通路的激活机制研究,2022年7月26日,中国科学院上海药物研究所徐华强/尹万超团队联合中国科学技术大学田长麟/石攀团队成功解析了神经激肽受体NK2R与下游蛋白Gq的复合物冷冻电镜结构,揭示了内源性配体NKA选择性识别NK2R亚型的结构基础,阐明了神经激肽受体家族的独特的激活机制,相关成果发表于Cell Discovery上。   NK3R作为下丘脑-垂体-性腺轴调节中一个较为重要的受体,广泛分布于中枢和外周。研究发现,NK3R功能失调会影响包括体液平衡和抗利尿激素释放、心血管功能、运动、疼痛、精神状况、温度调节和生殖等许多生理功能。NK3R能以较高的亲和力被内源性配体速激肽B(NKB)所激活,其次是P物质(SP)及速激肽A(NKA)。Senktide是基于SP改造出的对NK3R具有高亲和力及特异性的多肽配体。然而,速激肽及其类似物senktide与速激肽受体3的激活机制仍然未知,这限制了针对NK3R的药物开发。   2023年6月30日,该联合团队再次在Cell Discovery在线发表题为“Structural insights into neurokinin 3 receptor activation by endogenous and analogue peptide agonists”的研究论文,成功解析了NKB、SP和senktide分别结合NK3R-Gq复合物的冷冻电镜结构,分辨率分别为2.8埃,2.9埃和3.0埃,该结构也是最后被解析的速激肽受体家族成员的高分辨结构。基于获得的高质量结构,研究人员探究了速激肽类激动剂共有保守基序与受体NK3R的作用机制。结构分析发现,速激肽NKB、SP及其类似物senktide序列中C端较为保守的氨基酸基序(-Phe-Xaa-Gly-Leu-Met-NH2)与NK3R跨膜区的残基之间形成广泛的相互作用;NK3R的正性结合口袋参与此共有保守基序互作的主要包括来自跨膜区的残基N1422.61、I1663.33、 Y3156.51、F3196.55、 N1382.57和Y3387.35。进一步的突变和功能实验,验证了这些互作在配体与受体的激活以及传递下游信号至关重要。   速激肽NKB、SP及其类似物senktide序列的N端氨基酸差异较大,推测其差异性导致多肽不同的亲和力,senktide的N端琥珀酰修饰的天冬氨酸可与NK3R的ECL3,ECL2及N端形成稳定的相互作用,N端氨基酸替换实验表明将该氨基酸突变为SP中对应的谷氨酰胺后功能实验显示亲和力显著下降。文中揭示的NK3R与内源性速激肽SP、NKB及其类似物senktide的结构和功能特性之间的相关性将有利于进一步合理开发针对NK3R的具有更高选择性的药物。   该研究成果阐明了内源性肽激动剂NKB和SP以及SP类似物senktide对NK3R的详细激活机制,为理解NK3R肽识别选择性的机制提供了重要的结构模板,并为设计针对NK3R的候选药物提供了线索。   本研究的第一作者为中国科学技术大学博士研究生孙文静、特任副研究员杨帆、博士研究生张欢欢, 以及上海市高峰电镜中心执行主任袁青宁。中国科技大学田长麟教授和石攀副教授,上海药物所徐华强研究员,上海药物所/中科中山药物创新研究院尹万超研究员为共同通讯作者。上海市高峰电镜中心参与该项研究部分冷冻数据的收集。该研究获得了包括上海市重大科技专项、国家自然科学基金委、国家卫健委重大科技专项、国家重点基础研究计划等经费的资助。   全文链接:https://www.nature.com/articles/s41421-023-00564-w