《我国核燃料研究获得突破》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2017-06-12
  • 由中国科学院近代物理研究所原创提出的全新加速器驱动先进核能系统,可将铀资源利用率由目前技术的“不到1%”提高到“超过95%”,处理后核废料量不到乏燃料的4%,放射寿命由数十万年缩短到约500年。为探索更高效、更安全的核燃料循环体系奠定了基础,有望使核裂变能成为近万年可持续、安全、清洁的战略能源。

    中国科学院近代物理研究所副所长徐瑚珊研究员表示,发展清洁、高效、安全、可靠的核裂变能,是解决未来能源供应、保障我国经济社会可持续发展的战略选择。然而,核裂变能可持续发展必须解决核燃料的利用效率和乏燃料的安全处理处置问题,这是国际核能界面临的共同挑战。徐瑚珊说,2011年中国科学院启动了战略性先导科技专项(A类)“未来先进核裂变能-ADS(加速器驱动次临界系统)嬗变系统”,经过6年多的不懈努力和奋力攻关,该专项从零开始,突破了一些关键核心技术并部分引领国际发展。在认识到传统的ADS方案在经济性上缺乏竞争力且技术挑战巨大之后,该专项原创地提出了“加速器驱动先进核能系统”全新概念,并已通过大规模并行计算模拟研究证明了其原理上的可行性,完成了一系列实验室模拟原理验证实验并取得了突破性进展。

相关报告
  • 《突破极限,中国高温超导研究领跑世界》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-10-15
    • 刚刚过去的国庆黄金周,中国科学技术大学超导研究团队除了收看国庆70周年庆典外,每天依然到实验室里工作。 “下一个可以用来划分时代的材料,可能就是室温超导体。”在中国科学技术大学教授吴涛眼里,他们所从事的超导研究充满魅力。“如果发现室温超导体,我们出门可以坐上悬浮的超导车,甚至手机、手提电脑充一次电,就能用上好几个月。”正是带着这样的梦想,中国科学技术大学超导研究团队在这一领域里已经坚守了20余年。 突破超导研究的禁区 超导,是指某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。 1911年,荷兰科学家发现水银在极低温条件下的超导性,开辟了科学研究的新领域。1986年,德国科学家与瑞士科学家发现了临界转变温度为35K的铜氧化物超导体。 令科学家困扰的是,超导体的转变温度不能超过40K(约零下233摄氏度),这个温度也被称为麦克米兰极限温度。 40K的极限温度能否被突破?在两名欧洲科学家发现以铜为关键超导元素的铜氧化物超导体后不久,包括中国科学家在内的研究团队将铜氧化物超导体的临界转变温度提高到液氮温区以上,突破了麦克米兰极限温度,使其成为高温超导体。 “铜氧化物高温超导体家族有两个主要缺陷,作为金属陶瓷材料加工工艺严苛,综合成本高,影响广泛应用。此外,铜基超导并没有解决高温超导电性机理丰富的物理内涵。”吴涛告诉科技日报记者,要揭开高温超导的原理,广泛应用,寻找到临界温度更高的超导体势在必行。 铁基化合物由于其磁性因素,曾一度几乎被国际物理学界断言为探索高温超导体的禁区。 2008年3月,中科大陈仙辉研究组和中国科学院物理所王楠林研究组同时在铁基中观测到了43K和41K的超导转变温度,突破了麦克米兰极限,证明了铁基超导体是高温超导体。紧接着,中国科学家团队不仅率先使转变温度突破了50K,并发现了一系列50K以上的超导体,也创造了55K的铁基超导体转变温度纪录,被国际物理学界公认为第二个高温超导家族。 寻找更高转变温度的超导材料 突破了麦克米兰极限之后,全世界科学家对超导材料的探索又一次陷入了迷茫,在高影响因子的期刊上发表高温超导论文变得愈发困难。 中科大的超导团队却一直坚守着这块阵地,无数次地制备、观察、放弃、重新开始……为了拨开超导研究的迷雾,他们提出了“新型二维层状非常规超导材料”这个新的研究方向。 吴涛告诉记者,由于铜氧和铁基超导体均为层状结构,承载超导电性的关键结构单元分别是CuO2面和FeAs/Se层,被称作“超导基元”,目前确认的非常规超导体大都表现出此种结构特点。 “这些材料与通常的超导体在超导机理上有所不同,传统超导体的机理主要是基于电—声子相互作用的BCS理论,二维层状非常规超导材料的超导机理一般被认为不能用BCS理论解释。”吴涛认为,对铜氧化合物超导体及铁基超导体的微观机理的了解,会极大推动凝聚态物理学的新发展;同时,一旦发现更适于应用或具有更高临界温度的超导体,便可能像集成电路那样成为带动世界经济社会发展的新增长点。 目前,比较公认的超导研究核心重点有两个:第一个是新型(高转变温度)非常规超导材料,第二个是高温超导(以及非常规超导)的机理问题。 “我们依据二维结构单元与超导电性之间的普适关联性,以构筑二维层状超导单元为基础,通过块层、异质结设计等研究思路来探索非常规超导电性。”吴涛告诉记者,作为国家重大专项,在实施两年多的时间里,已经利用电化学插层法成功合成出两种新的铁硒基高温超导材料,并且发现这些新的超导材料具有与铜基高温超导体相似的超导预配对现象,还发现了二维结构对铁硒基超导体中高温超导的形成具有重要的影响。“这些新的发现将为建立普适的高温超导机理提供关键的实验证据。”吴涛表示,在新的研究方向上,可能有助于发现新的具有超高临界场和临界电流密度的实用型超导体。 探索更适于应用的超导体 其实,超导已经开始走进我们的生活。如高温超导滤波器已被应用于手机和卫星通讯,并明显改善了通信质量;超导量子干涉器件(SQUID)装备在医疗设备上使用,则大大加强了对人体心脑探测检查的精确度和灵敏度;世界上首个超导示范变电站也已在我国投入电网使用…… 在吴涛看来,他们的研究对于国家重点发展的超导量子计算领域或将有推动作用。“它有可能应用到新型低能耗、自纠错的拓扑量子计算领域。”吴涛说。 目前,超导体还没有达到所期望的广泛应用,主要原因是仍有两个重要问题亟待解决:一是超导应用的经济性;二是常温常压下的超导材料仍未被发现。 “因此突破现有超导材料转变温度的限制,发现具有更高转变温度的新型超导,蕴含着重大科学意义。”吴涛对中国超导研究的未来充满希望,“超导研究已经扎根于中国,我们期望通过努力,获得二维非常规超导体新材料探索和机理研究方面的重大突破,继续保持我们在高温超导材料探索和相关研究的国际领先地位。”
  • 《突破 | 亚纳米级光学技术获得重要突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-24
    • 想象一下,将光缩小到一个微小的水分子大小,打开一个量子可能性的世界。这是光科学和技术领域长久以来的梦想。最近的进展使我们离实现这一令人难以置信的壮举更近了一步,因为浙江大学的研究人员在将光限制在亚纳米尺度上取得了突破性进展。 传统上,有两种方法来局部化超出其典型衍射极限的光:介电约束和等离子体约束。然而,诸如精密制造和光损耗等挑战阻碍了将光场限制在亚10纳米(nm)甚至1纳米水平。但是现在,《先进光子学》杂志报道了一种新的波导方案,有望释放亚纳米光场的潜力。 想象一下:光从一根普通的光纤出发,通过一根光纤锥开始一段变革性的旅程,最终到达一个耦合纳米线对(CNP)。在CNP中,光变形成一个非凡的纳米狭缝模式,产生一个受限的光场,可以小到仅仅是纳米的几分之一(大约0.3纳米)。这种新颖的方法具有高达95%的惊人效率和很高的峰值与背景比,提供了一个全新的可能性世界。 新的波导方案将其范围扩展到中红外光谱范围,进一步推动了纳米宇宙的边界。光学约束现在可以达到大约0.2nm (λ/20000)的惊人规模,为探索和发现提供了更多的机会。 浙江大学纳米光子学组的童利民教授指出:“与以前的方法不同,波导方案以线性光学系统的形式呈现,带来了许多优点。它可以实现宽带和超快脉冲操作,并允许多个亚纳米光场的组合。在单一输出中设计空间,光谱和时间序列的能力开辟了无限的可能性。” 这些突破的潜在应用是令人敬畏的。光场定位到可以与单个分子或原子相互作用,有望在光-物质相互作用、超分辨率纳米显微镜、原子/分子操作和超灵敏检测方面取得进展。我们站在一个新发现时代的悬崖上,在那里,最小的存在领域都在我们的掌握之中。 光被极大地限制在耦合的纳米线对中的纳米狭缝中 在纳米狭缝模式下产生亚纳米受限光场的波导方案。(a) CNP波导方案示意图。(b)纳米狭缝模式横截面场强分布图