《突破 | 上海光机所在探究低熔点含氮亚锡氯磷酸盐玻璃的制备及结构方面取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-07-11
  • 近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室在350℃下制备了P-Sn-O-Cl-N玻璃系统并探究了其结构性能,相关研究成果以“Preparation and structure of low-melting-point stannous chlorophosphate containing nitrogen glasses”为题发表于Journal of Non-Crystalline Solids上。

    磷酸盐玻璃由于玻璃化转变温度低,在非球面玻璃成型、低温封装、光子转换及有机复合材料等领域具有潜在应用。氯磷酸盐玻璃具有磷酸盐和卤化物玻璃的综合优点,如热膨胀系数高、抗失透性强和声子能量低。然而,熔融温度对低熔点玻璃的形成和性能有很大影响,目前研究还没有报道过熔融温度对在500℃以下制备的Sn-P-O-Cl-N玻璃性能的影响。

    研究团队利用传统的熔融萃冷法,在500℃下制备的P-Sn-O-Cl-N无色透明玻璃体系中,通过比较样品的颜色、透明度和化学稳定性,确定最佳熔融温度为350℃,玻璃呈现出<140℃的超低玻璃化转变温度,并通过红外、拉曼和XPS研究了其组成和结构。在这之前已有研究人员对这种玻璃进行过研究,但都局限在500℃以上。在较低温度下制备的玻璃的透明度,成分和结构明显不同于500℃以上的温度。低温熔融减少了配料中Cl-和NH4+离子的挥发,从而降低了玻璃的熔点和Tg。本研究中制备的新型低熔点玻璃,为非球面成型玻璃,钙钛矿量子点的基体玻璃,和低熔点功能材料掺杂玻璃等领域提供了新思路。

    图1 不同温度制备的Sn-P-O-Cl-N玻璃

    图2 在350℃熔融的Sn-P-O-Cl-N玻璃的热膨胀(a)和DSC(b)曲线

相关报告
  • 《突破 | 上海光机所在全固态反谐振光纤设计与制备方面取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-10-18
    • 近日,中国科学院上海光学精密机械研究所先进激光与光电功能材料部特种玻璃与光纤研究中心团队首次报告了用于抑制~1μm传输的全固态抗谐振光纤(AS-ARF)的设计、制备和光学特性分析。相关成果“Design and fabrication of all-solid anti-resonant silicate fibers for Yb ASE suppression in Er/Yb fiber amplifier”为题发表于Optics Express。 目前,反谐振空芯光纤由于兼具大模场单模传输及滤波特性的优势被广泛研究。但由于较高的制备和熔接难度等问题,工业化应用还存在一定的限制。因此,开发一种具有全固态反谐振结构的大模场光纤有望拓展其在有源及无源高功率光纤激光器方向的应用。 在这项工作中,研究团队的仿真结果表明,AS-ARF在1550 nm波长、纤芯直径为26-63μm的情况下,可以实现超过25 dB的高阶模式(HOM)抑制比。采用打孔-套管结合高温拉丝技术制备了硅酸盐无源AS-ARF。如图1(a)所示,其纤芯直径为43 μm,数值孔径为0.023,高折圆环壁厚为1.4μm。图1(b)和(d)结果验证了其具有大模场单模传输及滤波特性。通过在EYDF放大器中熔接12 cm长的AS-ARF,Yb3+离子的放大自发辐射被有效抑制,1030 nm波段的损耗比1550 nm波段高12.3 dB。这是AS-ARF首次实现~1.5μm单模传播及~1μm传输抑制。这种新型光纤结构方案有望进一步应用于掺稀土元素的光纤放大器和激光器,包括掺Nd、Yb、Er、Tm和其它稀土元素的光纤放大器和激光器。 图1 (a) AS-ARF的截面图;(b) 黑色曲线为40 cm长的AS-ARF在0.5-1.7 μm波长范围内的透射光谱,红色曲线为计算出的基模损耗;(c)和(d)不同耦合条件下输出光束轮廓的变化
  • 《中国科学院新疆理化所在模拟月壤制备连续纤维领域取得突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-06-15
    • 月球是离地球最近的天体, 是人类唯一、可靠且稳定的“天然空间站”, 也是人类走出地球、开展深空探测的起点。随着月球探测工作的深入发展,月球基地建设成为国内外众多月球探测方案和开发计划的重要目标。月球表面分布有大量玄武岩质月壤,若能利用月壤制备连续纤维,不仅能实现月球资源的就地利用,还可满足月球基地建设对所需结构和功能材料性能的需求。 中国科学院新疆理化技术研究所马鹏程研究员领衔的复合材料团队与北京航空航天大学、中国科学院宁波材料技术与工程研究所、中科瑞丽分离科技无锡有限公司等单位合作,以月球基地建设中对高性能材料的需求为出发点,采用模拟月壤为主要研究对象,通过分析样品的组成、结构、热力学行为,探究了月壤材料用于制备连续纤维的可行性。研究结果表明月壤与地球玄武岩矿石具有相近的化学成分、矿物相组成和类似的成纤行为,模拟月壤在1332 oC完全熔融并在淬冷后转化为非晶态玻璃体。采用熔融-牵引法获得了单丝拉伸强度超过1400 MPa的月壤基连续纤维(见图1),该强度接近目前商业化的地球玄武岩纤维材料。 研究结果证实以月壤为原料可获得连续、直径可控的纤维材料,所得纤维有望通过复合技术实现月壤基纤维增强复合材料的制备,这对于原位利用月壤建设月球基地具有重要的应用价值。 图1. 月壤基连续纤维的制备及其形貌 下一步团队将针对月球特殊环境(昼夜温差大、高真空、低重力等), 开展纤维制备过程中的能耗、成纤设备的设计与系统集成、月壤纤维与基体间相互作用等基础研究。研究工作得到中国科学院“西部之光”交叉团队-重点实验室合作研究专项、中国科学院“十三五”规划重点培育方向、新疆“天山雪松计划”等项目支持,相关成果近期发表在《中国科学: 技术科学》杂志上。