《突破 | 上海光机所在全固态反谐振光纤设计与制备方面取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2024-10-18
  • 近日,中国科学院上海光学精密机械研究所先进激光与光电功能材料部特种玻璃与光纤研究中心团队首次报告了用于抑制~1μm传输的全固态抗谐振光纤(AS-ARF)的设计、制备和光学特性分析。相关成果“Design and fabrication of all-solid anti-resonant silicate fibers

    for Yb ASE suppression in Er/Yb fiber amplifier”为题发表于Optics Express。

    目前,反谐振空芯光纤由于兼具大模场单模传输及滤波特性的优势被广泛研究。但由于较高的制备和熔接难度等问题,工业化应用还存在一定的限制。因此,开发一种具有全固态反谐振结构的大模场光纤有望拓展其在有源及无源高功率光纤激光器方向的应用。

    在这项工作中,研究团队的仿真结果表明,AS-ARF在1550 nm波长、纤芯直径为26-63μm的情况下,可以实现超过25 dB的高阶模式(HOM)抑制比。采用打孔-套管结合高温拉丝技术制备了硅酸盐无源AS-ARF。如图1(a)所示,其纤芯直径为43 μm,数值孔径为0.023,高折圆环壁厚为1.4μm。图1(b)和(d)结果验证了其具有大模场单模传输及滤波特性。通过在EYDF放大器中熔接12 cm长的AS-ARF,Yb3+离子的放大自发辐射被有效抑制,1030 nm波段的损耗比1550 nm波段高12.3 dB。这是AS-ARF首次实现~1.5μm单模传播及~1μm传输抑制。这种新型光纤结构方案有望进一步应用于掺稀土元素的光纤放大器和激光器,包括掺Nd、Yb、Er、Tm和其它稀土元素的光纤放大器和激光器。

    图1 (a) AS-ARF的截面图;(b) 黑色曲线为40 cm长的AS-ARF在0.5-1.7 μm波长范围内的透射光谱,红色曲线为计算出的基模损耗;(c)和(d)不同耦合条件下输出光束轮廓的变化

  • 原文来源:https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-19-33962&id=559514
相关报告
  • 《突破 | 上海光机所在高功率光纤传能方面取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-07-29
    • 近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室在高功率空芯光纤传能研究方面取得新进展。研究团队利用5米长反谐振空芯光纤成功实现了1微米波段千瓦级以上功率的连续激光的长时间柔性传输,相关研究成果以“Laser-induced damage of an anti-resonant hollow-core fiber for high-power laser delivery at 1 μm”为题在线发表于《光学快报》(Optics Letters)。 高功率光纤激光器在机械加工、医疗手术和军事国防领域都有着广泛的应用。受限于传统石英光纤的非线性激光损伤与能量损失,千瓦级以上激光传输一般采用大芯径石英光纤。光纤多模传输条件下,光纤远端激光聚焦尺寸大,光束质量差,根本上限制了其在精密加工等场景中的广泛应用。近些年出现的反谐振空芯光纤将光场束缚于中空的纤芯中,为激光传输提供了一个类似自由空间的环境。反谐振空芯光纤在长距离激光传输中,展现出良好的单模特性(M2<1.3),具有极高的损伤阈值,极低的非线性和色散,成为高功率激光传输新的突破口。 研究人员通过4-f透镜系统将1080 nm大功率工业连续光纤激光器的输出耦合进入5米长的自研反谐振空芯光纤(光纤损耗0.13dB/m@1080nm),实现了千瓦级激光的准单模传输。研究人员设计并制作的水冷耦合端子为空芯反谐振光纤提供高效热管理。在1500W激光入射功率和80%耦合效率下,实现了1kW功率以上的激光长距离光纤传输,且光纤端面无激光损伤。其中1KW入射功率下,反谐振空芯光纤在30分钟之内保持连续激光无损稳定传输。 研究发现了三类空芯光纤的激光损伤机制,初步建立了反谐振空芯光纤高功率连续激光损伤模型。理论估算表明,空气填充条件下的反谐振空芯光纤的连续激光传输功率高达97kW。本项目研究结果为进一步发展和优化微结构空芯光纤激光传能技术打下了坚实的基础。 本研究得到了国家自然科学基金、国际科技合作计划、中国科学院前沿科学重点研究项目、国家科技支撑计划的支持。 图1 (a)反谐振空芯光纤传输损耗测量图(插图为反谐振空芯光纤电镜图);(b) 基于反谐振空芯光纤的千瓦级高功率能量传输实验装置图 图2 基于反谐振空芯光纤的高功率能量传输(a)输出功率与耦合效率随输入功率变化图;(b)输出功率随时间变化曲线(输入功率为1000W) 图3 反谐振空芯光纤理论损伤阈值随耦合效率的变化曲线
  • 《突破 | 上海光机所在超高并行光计算集成芯片方面取得突破性进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-06-20
    • 近日,中国科学院上海光学精密机械研究所空天激光技术与系统部谢鹏研究员团队在解决“光芯片上高密度信息并行处理”难题上取得突破,研制出超高并行光计算集成芯片-“流星一号”(如图1所示),实现了并行度>100的光计算原型验证系统。 图1.超高并行光计算集成芯片-“流星一号” 光计算作为非冯?诺伊曼结构代表,具有可扩展、低功耗、超高速、宽带宽、高并行度的天然优势,是后摩尔时代破解高维张量运算、复杂图像处理等大规模数据快速计算的关键技术,为人工智能、科学计算、多模态融合感知、超大规模数据交换等“算力密集+能耗敏感”场景提供硬件加速。过往几年,学术界和产业界持续对光计算芯片的矩阵规模、光学主频开展深度探索,以台积电的光计算芯片矩阵规模(~512x512)和美国加州理工学院的光计算光学主频(>100GHz)为典型代表,分别呈现逼近工艺极限和物理极限的趋势,进一步取得突破难度颇大。因而,有效扩展计算并行度是光计算性能提升的前沿发展方向,也是光计算迈向实用的必由之路。 上海光机所研究团队围绕光计算技术并行度提升,创新超高并行光计算架构(如图2所示),破解光计算芯片的信息高密度信道串扰抑制、低时延光信号高精度同步和跨尺度高密度器件集成等核心挑战,在融合了多波长光源、高速光交互、可重构光计算、高精度光矩阵驱动和并行光电混合计算算法的基础上,成功研发了全新片上并行光计算集成芯片系统。该系统核心光芯片全部自主研制,包含了自主研制的集成微腔光频梳(频率间隔~50GHz,输出光谱范围>80nm,可支撑波长复用计算通道数>200),作为芯片级多波长光源子系统;自主研制的大带宽、低时延、可重构光计算芯片(通光带宽>40nm),作为高性能并行计算核心;自主研制的高精度、大规模、可扩展的驱动板卡,作为光学矩阵驱动子系统(通道数>256);基于该光子集成芯片系统,首次验证了并行度>100的片上光信息交互与计算原型;在50GHz光学主频下,单芯片理论峰值算力>2560TOPS ,功耗比>3.2TOPS/W。 此研究进展为突破光计算的计算密度瓶颈,提升光计算性能开辟了新途径,为发展低功耗、低时延、大算力、高速率的超级光子计算机带来了可能性。 图2.超高并行光计算架构