《Nature | CHIT1阳性小胶质细胞促进灵长类脊髓运动神经元老化》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-11-01
  • 本文内容转载自“生物世界”微信公众号。原文链接: https://mp.weixin.qq.com/s/TfghmzxoGaURAfb34hyldA

    2023年10月31日,中国科学院动物研究所刘光慧课题组联合中国科学院北京基因组研究所张维绮课题组、中国科学院动物研究所曲静课题组合作,在国际顶尖学术期刊 Nature 上发表了题为CHIT1-positive microglia drive motor neuron aging in the primate spinal cord 的研究论文。

    该研究历时7年,通过综合运用单细胞核转录组、神经组织学、神经电生理等技术手段,发现了一群全新的在年老的灵长类动物的脊髓中特异存在的CHIT1阳性小胶质细胞亚型,并将其命名为——AIMoN-CPM(Aging-Induced Motor Neuron toxic CHIT1-Positive Microglia),这类细胞可以通过旁分泌CHIT1蛋白激活运动神经元中的SMAD信号,进而驱动运动神经元衰老,而补充维生素C可抑制脊髓运动神经元的衰老和退行。

    该研究首次系统刻画了灵长类脊髓衰老的表型、病理及细胞分子特征,并揭示了一种可促进运动神经元衰老的新型小胶质细胞AIMoN-CPM。CHIT1不仅介导了AIMoN-CPM对运动神经元的毒性作用,而且可以作为一种度量人类脊髓衰老程度的体液标志物。更为重要的是,该研究创新性地建立了人类运动神经元-微环境互作研究体系,为开展人类神经系统衰老研究及相关的药物评价提供了新范式。鉴于脊髓运动神经元对于遍布全身的包括骨骼肌、平滑肌和心肌在内的肌肉系统的指挥调控作用,加深对灵长类脊髓衰老机制的认识无疑会深化学术界对人类多种器官退变规律的理解。AIMoN-CPM和CHIT1的发现,为理解脊髓衰老及老年群体多种慢病共存开辟了新的科学疆域,以AIMoN-CPM和CHIT1为靶标,或可为延缓人类脊髓衰老、实现老年共病的积极防控带来新的希望。

  • 原文来源:https://www.nature.com/articles/s41586-023-06783-1
相关报告
  • 《Glutaredoxin-1 会激活胶质细胞和促进神经退行性疾病》

    • 来源专题:重大新药创制—内分泌代谢
    • 编译者:李永洁2
    • 发布时间:2016-06-30
    • 目的:神经炎症和氧化还原功能障碍被认为在帕金森氏病(PD)发病因素,以及糖尿病牵涉作为潜在的倾向性条件。值得注意的是,Glutaredoxin-1(Grx1)的上调中的各种疾病环境中,包括糖尿病炎症反应调节是牵连。在这项研究中,我们调查在中枢神经系统中多巴胺能(DA)的存活率Grx1上调的潜在影响。结果:在PD患者增加GLRX拷贝数与早期的PD发病相关联,并在小鼠和人脑样品促炎肿瘤坏死因子-α(TNF-α)的水平相关Grx1水平,促使机械体外研究。在小神经胶质细胞Grx1含量/活性通过脂多糖(LPS),或TNF-α治疗上调。 Grx1的腺病毒表达,脂多糖匹配感应的程度,提高了小胶质细胞活化; Grx1沉默不减激活。选择性抑制剂/核因子κB(NF-κB)活化的探针揭示glrx1感应由Nurr1的/ NF-κB的轴来介导。在小神经胶质细胞Grx1上调对应于在共培养的神经元细胞的死亡增加。饮食诱导的胰岛素抵抗的小鼠糖尿病模型中,我们发现在脑Grx1的上调用DA损失相关(降低酪氨酸羟化酶[TH];减少的TH阳性纹状体终末);这些效果未见与Grx1敲除小鼠。结论:在体外和体内数据表明Grx1上调促进神经毒性神经炎症,可能造成PD。
  • 《3D打印植入物促进神经细胞生长以治疗脊髓损伤》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-02-28
    • 一个3D打印的两毫米(比一美分硬币稍微厚一些)的植入物被用作修复大鼠脊髓损伤的支架。围绕在H型中心的圆点是空心的入口,植入的神经干细胞通过这个入口将轴突伸展至宿主组织。图片来源:Jacob Koffler and Wei Zhu, UC San Diego 近日,美国加州大学圣迭戈分校医学院和医学工程研究所的研究人员首次通过快速3D打印技术制造出一个脊椎,然后将其成功植入大鼠脊髓严重受伤的位置,利用其作为装载了神经干细胞的支架。 这项研究近日发表在Nature Medicine上,该研究描述的植入物用于促进脊髓受伤部位的神经生长,修复神经连接和失去的功能。在大鼠模型中,这些支架支持组织再生、干细胞生存以及神经干细胞轴突从支架至扩展至宿主的脊髓。 研究通讯作者、转化神经科学研究所的负责人,神经科学教授Mark Tuszynski博士说:“近年来,我们逐渐向脊髓受损轴突的远距离大量再生目标靠近,这是生理功能真正恢复的基础。轴突是神经细胞上的长而丝状的延伸,它能够连接到其他的细胞。” 该研究的共同第一作者、Tuszynski实验室的助理项目科学家Kobi Koffler博士说:“这项新研究使我们距离目标实现更近一步,因为3D支架包含脊髓中细长的、成束的轴突阵列。它有助于组织轴突再生,以复制受损前的脊髓解剖结构。” 共同通讯作者、纳米工程教授Shaochen Chen博士及其同事利用快速3D打印技术创建了一个模拟中枢神经系统结构的支架。 Chen说:“这个支架就像一座桥,它将脊髓损伤一端的再生轴突与另一端对齐。轴突自身可以向任何方向扩散和再生,但是支架使轴突保持有序,引导它们朝正确的方向生长,以完成脊髓连接。” 更快更精确地打印 植入物包含数十个微小的、200微米宽的通道(人类头发宽度的两倍),可以引导神经干细胞和轴突沿着脊髓损伤的长度生长。Chen的团队使用的打印技术能够在1.6秒内生成两毫米大小的植入物。而传统的喷嘴打印机即使打印更简单的结构也要花费几个小时。 该过程可根据人体脊髓的大小进行调整。作为概念验证,研究人员打印出根据人体脊髓损伤的MRI扫描建模的4厘米的植入物。这些植入物的打印在10分钟内完成。 Chen团队中的纳米博士后研究员Wei Zhu博士说:“这表明了我们3D打印技术的灵活性。我们可以快速打印出能够匹配脊髓受损位置的植入物,无论这个位置的大小和形状是什么样。” 修复受损的连接 研究人员将装载有神经干细胞的两毫米植入移植到大鼠严重受损的脊髓位置。几个月后,新的脊髓组织在受伤位置完全再生,并与分离的脊髓端连接起来。接受治疗的大鼠的后腿功能性运动得到显著改善。 Koffler说:“这对于进行临床试验修复受损脊髓是另一个关键步骤。该支架提供了一种稳定的物理结构,它能够支持神经干细胞的持续植入和存活。它似乎可以防止移植的神经干细胞受到脊髓受伤时产生的毒性炎症环境的影响,并指引轴突完全穿过病变部位。” 此外,接受治疗大鼠的循环系统已经穿透植入物内部以形成功能性的血管网络,这有助于神经干细胞存活。 Zhu说:“血管化是工程组织植入物长期存在于体内的主要障碍之一。3D打印组织需要血管系统才能获得足够的营养并排出废物。我们曾经研究过3D打印的血管网络,但并没有在该研究中采用这种方法。因为我们的3D打印支架具备良好的生物兼容性,所以生物学自然地帮我们解决了这个问题。” 这一进展标志着加州大学圣迭戈分校医学院和雅各布工程学院的两项长期研究的交集取得了稳步的渐进式的进展。科学家们正在调整这项技术并测试更大的动物模型,为潜在的人体测试做准备。接下来的工作包括将蛋白质掺入到脊髓支架中,以进一步促进干细胞的生存和轴突生长。 ——文章发布于2019-01-29