《分子植物卓越中心揭示绿光通过调控油菜素甾醇信号促进植物伸长》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-02-08
  • 2月1日,The Plant Cell在线发表了中国科学院分子植物科学卓越创新中心研究员刘宏涛团队题为Green means go: Green light promotes hypocotyl elongation via Brassinoteroid signaling的研究论文。该研究揭示了绿光在调控植物发育中的功能,并发现绿光通过调控内源激素油菜素甾醇信号通路从而调控植物发育。

      绿光占可见光能量的一半以上。植物令人愉悦的绿色是由其对绿光的反射造成的,可能给人一种印象,即绿光对植物来说无足轻重。研究表明,尽管绿叶比红光或蓝光反射更多的绿光,但绿叶仍吸收约10%-50%的绿光。之前有研究报道,绿光参与调节高等绿色植物的生长和发育,但其中一些结果相互矛盾,有研究认为绿光和红光、蓝光、远红光一样抑制伸长,也有研究认为绿光能促进伸长。绿光如何调节植物生长,为什么之前不同研究获得完全相反的结果,尚未可知。

      商用绿色LED光源都会发出少量蓝光或红光。该研究团队结合滤光片制作出不含有红光或蓝光的纯绿光光源,发现与蓝光、红光、远红光或UV-B光抑制下胚轴伸长不同,绿光促进而不是抑制拟南芥和其他多种植物的下胚轴伸长。进一步的研究发现,植物目前已知的光受体光敏素、隐花素、向光素等都不能作为绿光受体介导绿光促进下胚轴伸长,暗示有新的光受体存在并介导绿光信号转导。该研究发现内源激素油菜素甾醇信号通路参与绿光信号转导。BES1是油菜素甾醇信号转导中的关键转录因子,绿光能促进BES1的DNA结合活性,从而调控基因转录以促进下胚轴伸长。这些结果表明,绿光作为重要的环境信号促进下胚轴伸长。被其他植物遮挡的植物感受到的红光和蓝光大大减少,而绿光较多(上层叶片吸收较多红光和蓝光,而绿光较少),绿光可作为遮荫信号,促进伸长,使植物能够适应遮荫环境。

      相关研究工作得到国家自然科学基金委、中国科学院等项目的资助。

  • 原文来源:https://www.cas.cn/syky/202302/t20230202_4873801.shtml
相关报告
  • 《分子植物卓越中心等揭示植物平衡生长和盐胁迫响应的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-04-05
    • 4月3日,Nature Plants在线发表了中国科学院分子植物科学卓越创新中心研究员赵春钊团队题为FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB的研究论文。该研究揭示了类受体激酶FERONIA(FER)通过光敏色素phyB介导的光信号通路来调控植物生长和盐胁迫响应之间的平衡。   土壤盐碱化是威胁作物生长和产量、阻碍现代农业可持续性发展的世界性难题。因此,利用科学手段提高作物的耐盐性,对保障全球粮食安全至关重要。近年来,赵春钊团队一直致力于研究植物响应盐胁迫的分子遗传调控网络,为培育耐盐作物提供理论支持。该团队此前研究发现,细胞壁蛋白LRX3/4/5和类受体激酶FER组成一个分子模块来调控植物生长和耐盐性,但是该模块协调植物生长和耐盐性的分子机制还不清楚。   通过筛选突变体的抑制子,研究发现phyB基因突变能够抑制lrx345和fer-4突变体植株小和对盐胁迫敏感的表型。生化实验显示FER和phyB的N端结构域互作,并且磷酸化phyB的第106位和第227位丝氨酸。FER介导的磷酸化促进了暗环境下phyB光小体在细胞核中的暗逆转,并且抑制phyB在细胞核中的蛋白积累。盐胁迫通过抑制FER的激酶活性来影响phyB的磷酸化,进而导致phyB在细胞核中的暗逆转变慢以及在细胞核中的蛋白积累增加,而phyB在细胞核积累会抑制植物生长和促进胁迫响应。在fer-4突变体中,由于过多的phyB在核中积累,导致生长和胁迫响应的平衡受到破坏,从而造成fer-4突变体在盐胁迫下出现死亡表型。在水稻中,OsphyB突变显著提高水稻在盐胁迫下的存活率,进一步表明降低phyB在细胞核中的积累将改善植物在盐胁迫下的存活。   该研究鉴定到了磷酸化光敏色素phyB的重要激酶FER,揭示了phyB磷酸化在植物响应非生物胁迫中的重要生物学意义,以及解析了一个通过FER-phyB-PIFs模块协调植物生长和耐盐性的新机制。该研究成果为培育耐盐稳产作物新品种提供了重要的遗传改良位点和思路,具有潜在应用价值。   相关研究工作得到国家自然科学基金面上项目、中国科学院战略性先导科技专项等项目的资助。
  • 《分子植物卓越中心等揭示极光激酶调控根瘤共生的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-10-31
    •   北欧神话中,曙光女神Aurora用翅膀划破黑暗夜空形成极光,预示黎明的到来。Aurora基因首先在果蝇中被鉴定,其突变体细胞分裂时形成单极纺锤体,形似极光,故命名为极光激酶Aurora(Glover et al., 1995)。较多癌症中均存在极光激酶的过度表达,因而Aurora在抗肿瘤研究中被广泛关注,而研究人员对其在植物中的功能却知之甚少。   10月17日,中国科学院分子植物科学卓越创新中心、中国科学院-英国约翰·英纳斯中心植物和微生物科学联合研究中心研究员Jeremy Murray研究组在《美国国家科学院院刊》(PNAS)上,发表了题为Intracellular infection by symbiotic bacteria requires the mitotic kinase AURORA1的论文,首次揭示Aurora在根瘤共生中的重要作用及调控机制。   豆科植物与根瘤菌共生固氮可有效降低化肥使用量,因此解析共生的分子机制是发展可持续农业的重要基础。共生体系的建立首先依靠根瘤菌侵染宿主成功。对于多数豆科植物而言,根瘤菌通过精细的显微结构侵染线入侵植物细胞,进而在根瘤内定殖并固氮。侵染线成管状并穿过细胞,由植物细胞膜和细胞壁内陷而形成。该形成过程依赖细胞骨架重塑,需要微丝、微管和囊泡等多种组分的时空协调。科学家已注意到侵染线形成时所发生的细胞骨架动力学行为与有丝分裂中细胞板的发育过程颇为相似(Brewin, 1991; Rae et al., 1992),但细胞周期是否参与侵染线的形态建成尚不清楚。   前期研究发现根瘤菌侵染的发生与多个细胞周期基因的重新激活密切相关(Breakspear et al., 2014)。由于aur1突变体致死,研究利用CRISPR/Cas9编辑系统进行共生组织特异性敲除,发现AUR1突变后,侵染线发育异常,表明AUR1在早期结瘤过程中的关键作用。活细胞荧光成像分析、免疫共沉淀和蛋白磷酸化等实验揭示AUR1与微管蛋白及微管结合蛋白MAP65相互作用且共同定位于根毛中的预侵染结构,并暗示AUR1通过调控细胞骨架促进侵染线的形成。科研人员对转录调控的进一步研究表明,AUR1的激活受到R1R2R3-Myb类转录因子MYB3R1的直接调控。干扰MYB3R1的表达显著抑制侵染线和根瘤的形成,而过表达MYB3R1则显著增加侵染和结瘤。豆科植物AUR1启动子上的顺式元件与非豆科植物相比存在差异,且对AUR1的表达模式至关重要,表明共生进化过程中豆科植物通过招募MYB3R1-AUR1有丝分裂模块促进建成精巧的侵染线。   该研究初步揭示细胞周期基因调控侵染线形成的分子机理,为提高和改造豆科作物的固氮能力提供重要的基因资源和理论依据。研究工作得到中国科学院、国家重点研发计划、国家自然科学基金、中国博士后科学基金和上海市“超级博士后”激励计划等的支持。