《分子植物卓越中心揭示绿光通过调控油菜素甾醇信号促进植物伸长》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-02-08
  • 2月1日,The Plant Cell在线发表了中国科学院分子植物科学卓越创新中心研究员刘宏涛团队题为Green means go: Green light promotes hypocotyl elongation via Brassinoteroid signaling的研究论文。该研究揭示了绿光在调控植物发育中的功能,并发现绿光通过调控内源激素油菜素甾醇信号通路从而调控植物发育。

      绿光占可见光能量的一半以上。植物令人愉悦的绿色是由其对绿光的反射造成的,可能给人一种印象,即绿光对植物来说无足轻重。研究表明,尽管绿叶比红光或蓝光反射更多的绿光,但绿叶仍吸收约10%-50%的绿光。之前有研究报道,绿光参与调节高等绿色植物的生长和发育,但其中一些结果相互矛盾,有研究认为绿光和红光、蓝光、远红光一样抑制伸长,也有研究认为绿光能促进伸长。绿光如何调节植物生长,为什么之前不同研究获得完全相反的结果,尚未可知。

      商用绿色LED光源都会发出少量蓝光或红光。该研究团队结合滤光片制作出不含有红光或蓝光的纯绿光光源,发现与蓝光、红光、远红光或UV-B光抑制下胚轴伸长不同,绿光促进而不是抑制拟南芥和其他多种植物的下胚轴伸长。进一步的研究发现,植物目前已知的光受体光敏素、隐花素、向光素等都不能作为绿光受体介导绿光促进下胚轴伸长,暗示有新的光受体存在并介导绿光信号转导。该研究发现内源激素油菜素甾醇信号通路参与绿光信号转导。BES1是油菜素甾醇信号转导中的关键转录因子,绿光能促进BES1的DNA结合活性,从而调控基因转录以促进下胚轴伸长。这些结果表明,绿光作为重要的环境信号促进下胚轴伸长。被其他植物遮挡的植物感受到的红光和蓝光大大减少,而绿光较多(上层叶片吸收较多红光和蓝光,而绿光较少),绿光可作为遮荫信号,促进伸长,使植物能够适应遮荫环境。

      相关研究工作得到国家自然科学基金委、中国科学院等项目的资助。

  • 原文来源:https://www.cas.cn/syky/202302/t20230202_4873801.shtml
相关报告
  • 《分子植物卓越中心等揭示植物平衡生长和盐胁迫响应的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-04-05
    • 4月3日,Nature Plants在线发表了中国科学院分子植物科学卓越创新中心研究员赵春钊团队题为FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB的研究论文。该研究揭示了类受体激酶FERONIA(FER)通过光敏色素phyB介导的光信号通路来调控植物生长和盐胁迫响应之间的平衡。   土壤盐碱化是威胁作物生长和产量、阻碍现代农业可持续性发展的世界性难题。因此,利用科学手段提高作物的耐盐性,对保障全球粮食安全至关重要。近年来,赵春钊团队一直致力于研究植物响应盐胁迫的分子遗传调控网络,为培育耐盐作物提供理论支持。该团队此前研究发现,细胞壁蛋白LRX3/4/5和类受体激酶FER组成一个分子模块来调控植物生长和耐盐性,但是该模块协调植物生长和耐盐性的分子机制还不清楚。   通过筛选突变体的抑制子,研究发现phyB基因突变能够抑制lrx345和fer-4突变体植株小和对盐胁迫敏感的表型。生化实验显示FER和phyB的N端结构域互作,并且磷酸化phyB的第106位和第227位丝氨酸。FER介导的磷酸化促进了暗环境下phyB光小体在细胞核中的暗逆转,并且抑制phyB在细胞核中的蛋白积累。盐胁迫通过抑制FER的激酶活性来影响phyB的磷酸化,进而导致phyB在细胞核中的暗逆转变慢以及在细胞核中的蛋白积累增加,而phyB在细胞核积累会抑制植物生长和促进胁迫响应。在fer-4突变体中,由于过多的phyB在核中积累,导致生长和胁迫响应的平衡受到破坏,从而造成fer-4突变体在盐胁迫下出现死亡表型。在水稻中,OsphyB突变显著提高水稻在盐胁迫下的存活率,进一步表明降低phyB在细胞核中的积累将改善植物在盐胁迫下的存活。   该研究鉴定到了磷酸化光敏色素phyB的重要激酶FER,揭示了phyB磷酸化在植物响应非生物胁迫中的重要生物学意义,以及解析了一个通过FER-phyB-PIFs模块协调植物生长和耐盐性的新机制。该研究成果为培育耐盐稳产作物新品种提供了重要的遗传改良位点和思路,具有潜在应用价值。   相关研究工作得到国家自然科学基金面上项目、中国科学院战略性先导科技专项等项目的资助。
  • 《分子植物卓越中心揭示种子萌发调控新机制》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2025-07-15
    • 中国科学院分子植物科学卓越创新中心赵春钊研究组在《细胞报告》(Cell Reports)上,发表了题为FERONIA controls ABA-mediated seed germination via the regulation of CARK1 kinase activity的研究论文。该研究借助遗传学、生物化学和生物信息学等研究手段,揭示了类受体激酶FERONIA通过类受体胞质激酶CARK1调控脱落酸信号通路和种子萌发的新机制。种子是农业生产的“芯片”,关系到粮食安全问题。种子萌发通常受到环境因素的影响,因此研究逆境环境下种子萌发的调控机制,对于培育优良种子具有理论意义和应用意义。 脱落酸(ABA)核心信号通路包括脱落酸受体PYR1/PYLs、磷酸酶PP2Cs和激酶SnRK2s,在调控种子萌发过程中发挥着重要作用。研究表明,脱落酸受体PYR1/PYLs受到多个激酶磷酸化修饰,而磷酸化修饰的早期调控机制有待解析。类受体激酶是细胞膜定位蛋白之一,参与植物对外界信号的感知和传递,在植物生长发育和环境响应中具有关键作用。植物细胞存在大量类受体胞质激酶,而这类蛋白通常作用于类受体激酶的下游来传递外界信号。研究发现,类受体激酶FER和类受体胞质激酶CARK1作用于一个信号通路来调控脱落酸介导的种子萌发。 研究显示,FER基因突变导致脱落酸条件下种子萌发加快,而脱落酸触发的SnRK2s激活减弱,表明FER在脱落酸信号转导中发挥正调控作用。研究通过分析FER的免疫沉淀-质谱数据发现,ER和类受体胞质激酶VIII亚家族成员CARK1存在相互作用。CARK1是在种子中高表达的类受体胞质激酶,而随着种子萌发其转录水平逐渐降低,说明CARK1在种子萌发过程中可能发挥负调控作用。同时,CARK家族成员CARK2、CARK10和CARK11也在种子中高表达,并随着种子萌发而表达量下降,说明CARK基因或共同参与调控种子萌发。 生化结果显示,FER磷酸化CARK1的第233位丝氨酸和第234位苏氨酸这两个位点的磷酸化是CARK1激酶活性所需要的。结果表明,FER通过磷酸化来增强CARK1的激酶活性。同时,cark1单突变体表现出在脱落酸条件下萌发快的表型,而Ser233和Thr234位点突变成Ala的CARK1不能互补cark1的萌发表型,说明Ser233和Thr234的磷酸化对于CARK1的功能是必需的。ABI5是脱落酸信号通路下游抑制种子萌发的主要转录因子,而在fer-4和cark1突变体中脱落酸诱导的ABI5积累降低,表明FER和CARK1通过脱落酸信号通路正调控ABI5的蛋白稳定性。遗传分析显示,过量表达脱落酸受体PYL9能够抑制fer-4突变体在脱落酸条件下种子萌发快的表型,证明FER通过ABA信号通路调控种子萌发。因此,FER通过磷酸化修饰激活CARK1激酶,正调控脱落酸介导的种子萌发抑制。 该研究揭示了直接作用于FER下游的类受体胞质激酶,阐明了脱落酸和胁迫条件下种子萌发调控的新机制。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院相关项目等的支持。