《加州大学利用碳纳米管网制成新型电池隔膜 防止电池过热燃烧》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-03-28
  • 加州大学圣地亚哥分校的纳米工程师开发了一种安全特性,可以防止锂金属电池在内部短路时迅速升温并着火。由加州大学圣地亚哥分校纳米工程学教授刘平和他的博士生马修冈萨雷斯领导的研究人员在《先进材料》杂志上发表了一篇论文,详细介绍了他们的工作。

    锂金属电池在性能方面具有很大的潜力,但在目前的形式上很容易发生故障。这是由于被称为树枝状晶体的针状结构的生长所致,该树枝状结构在电池充电后在阳极上形成,并且可以刺穿隔板,而隔板是在阳极和阴极之间形成的屏障,可减慢能量和热量的流动。

    当这个障碍被破坏并且电子可以更自由地流动时,它们会产生更多的热量,并且事情会失控,导致电池过热、失效、着火甚至bao炸。科学家们正在寻求以各种方式解决锂金属电池中的这些问题,其中使用超声波或特殊的保护层来防止枝晶生长只是其中的几种可能性。

    该团队对电池中被称为隔膜的部分进行了巧妙的调整,隔膜是电池正极和负极之间的屏障,这样一来,当电池短路时,电池内部积聚的能量(也就是热量)流动就会减慢。

    论文第一作者冈萨雷斯说:“我们并不是试图阻止电池故障的发生。我们只是让电池变得更加安全,这样当它发生故障时,电池就不会灾难性地着 火或爆 炸”。

    锂金属电池在反复充电后,阳极上会出现树突的针状结构。随着时间的推移,树突生长得足够长,穿透隔膜,在阳极和阴极之间架起一座桥梁,导致内部短路。当这种情况发生时,两个电极之间的电子流动失去控制,导致电池立即过热并停止工作。

    加州大学圣地亚哥分校的研究小组发明的隔板基本上缓解了这种现象。一面覆盖着一层薄的、部分导电的碳纳米管网,它可以拦截任何形成的树突。当一个树突刺穿隔膜并撞击碳纳米管网时,电子就有了一个通道,它们可以慢慢地排出,而不是一下子直接冲向阴极。

    冈萨雷斯将新的电池分离器比作大坝上的泄洪道。他说:“当大坝开始溃决的时候,就会打开溢洪道,让一些水以一种可控的方式流出来。这样,当大坝真的决堤并外溢的时候,就没有多少水可以引发洪水了。这就是我们的分离器的想法,大幅降低电荷的排出速度,防止电子“泛滥”到阴极。当树突被分离器的导电层拦截时,电池就会开始自我放电,这样当电池短路时,就没有足够的能量来产生危险了。”

    其他的电池研究工作集中在用足够坚固的材料来阻挡树突的穿透来制造分离器。但冈萨雷斯说,这种做法的一个问题是,它只是延长了不可避免的结果。这些分离器仍然需要有孔,让离子通过,以便电池的工作。因此,当树突最终通过时,短路将变得更糟。

    在测试中,安装了新分离器的锂金属电池在20到30次循环中显示出逐渐失效的迹象。与此同时,电池与一个正常(和略厚)分离器经历突然故障在一个周期。

    “在一个真实的用例场景中,你不会有任何关于电池即将失效的预先警告。前一秒可能还好,下一秒就会着火或完全短路。这是不可预测的,”冈萨雷斯说。“但有了我们的分离器,你就会提前得到警告,电池越来越差,越来越差,越来越差,每次充电都是如此。”

    虽然这项研究的重点是锂金属电池,研究人员说,这种分离器也可以用于锂离子和其他电池化学反应。研究小组将致力于优化分离器的商业使用。加州大学圣地亚哥分校已经为研究申请了一项临时专利。

相关报告
  • 《青岛能源所制备出新型纳米复合材料用于锂硫电池隔膜改性》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-05-24
    • 锂硫电池,以单质硫作为正极,金属锂为负极,理论比能量可达2600Wh kg -1 ,是传统锂离子电池的3~5倍,且由于单质硫在地球中储量丰富、价格低廉,因此被认为是最具发展潜力的下一代高比能量二次电池体系之一。然而,由于锂硫电池在充放电过程中产生的聚硫化物易溶于电解液,并通过隔膜到达金属锂负极,进而产生严重的“穿梭效应”,引起活性物质损失、硫化物沉积不均,导致电池循环性能变差。    基于以上问题,青岛能源所先进储能材料与技术研究组研究人员从锂硫电池隔膜改性入手,在碳纳米管(CNT)表面引入过渡金属化合物CoNi 1/3 Fe 2 O 4 (CNFO),成功制备出CNFO@CNT纳米复合材料,并通过真空抽滤方式将其均匀涂布到商用隔膜表面。受益于CNFO的强极性吸附作用和CNT的导电作用,该改性隔膜可以有效吸附正极溶出的聚硫化合物并加以循环再利用。  将CNFO@CNT改性隔膜应用于锂硫电池中,实验结果证明在2.0 C下常温循环250圈后容量保持率高达84%。不仅如此,研究人员将改性后的锂硫电池置于高温60℃中测试其循环稳定性,发现在CNFO较强的化学吸附作用下,0.5 C经过100圈循环后,容量保持率依然能够达到78%,并保持98%以上的库伦效率。该改性材料相比CNT改性隔膜,无论是常温还是60℃高温,对锂硫电池的倍率及循环稳定性都有较大的提升。    相关成果已发表在ACS Applied Materials & Interfaces(Tao Liu, et al,Jianfei Wu. doi:10.1021/acsami.9b02136)上。此外,以固体电解质取代传统电解液的全固态锂硫电池可以从根本上解决聚硫化物的溶解难题,研究组在目前开发的锂硫电池和高电导率硫化物固体电解质的基础上,下一步将继续开发高性能锂硫全固态电池,相关成果已在J.Mater.Chem.A(2018, 6, 23486–23494),Electrochim. Acta(2019, 295, 684-692)等期刊发表,研究成果得到了中国科学院率先行动相关人才计划、国家自然科学基金、青岛能源所-大连化物所融合基金项目的支持。
  • 《【Nature Nanotechnology】扭曲碳纳米管可以实现比先进的锂离子电池更好的能量存储》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-07-29
    • 一个由国际科学家组成的团队,包括两名现在在UMBC高级传感器技术中心(CAST)工作的研究人员,已经证明,扭曲的碳纳米管每单位质量存储的能量是先进锂离子电池的三倍。这一发现可能会推动碳纳米管作为一种有前途的解决方案,用于需要轻质、紧凑和安全的设备中存储能量,例如医疗植入物和传感器。这项研究最近发表在 Nature Nanotechnology 杂志上。 桑吉夫-库马尔-乌贾因是这项工作的首席研究员。 他在日本长野信州大学就读期间开始了该项目,并于2022年来到加州大学伯克利分校后继续工作。 研究人员研究了单壁碳纳米管,它就像吸管一样,由厚度仅为 1 原子的纯碳片制成。 碳纳米管重量轻,比较容易制造,强度约为钢的 100 倍。 这些惊人的特性促使科学家们探索它们在包括太空电梯在内的各种听起来很有未来感的技术中的潜在用途。 为了研究碳纳米管储存能量的潜力,研究人员和他们的同事用成束的市售碳纳米管制造了碳纳米管 "绳索"。 研究人员将这些碳纳米管拉拧成一条线后,在其表面涂上不同的物质,以增加碳纳米管绳索的强度和柔韧性。 研究小组通过将碳纳米管绳索拧紧并测量其松开时释放的能量,测试了碳纳米管绳索可以储存多少能量。 他们发现,性能最好的绳索单位质量可储存的能量是钢制弹簧的 15000 倍,是锂离子电池的三倍。 在-76 至 +212 °F(-60 至 +100 °C)的温度范围内,所存储的能量仍能保持稳定并可被利用。 碳纳米管绳索中的材料对人体也比电池中使用的材料更安全。 原文链接: Shigenori Utsumi et al, Giant nanomechanical energy storage capacity in twisted single-walled carbon nanotube ropes, Nature Nanotechnology (2024). DOI: 10.1038/s41565-024-01645-x