《青岛能源所开发出新型三维太阳光驱动海水淡化膜材料》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2018-06-15
  • 利用太阳光驱动水蒸发获取清洁饮用水, 有望作为一种应急手段, 用在海难或野外求生等情况下。相对于自然蒸发过程和传统膜分离技术, 将具有良好光热转化能力的光热膜应用到太阳光驱动水蒸发体系中, 可以有效提高蒸发效率。青岛能源所江河清研究员带领的膜分离与催化研究组前期利用不同纳米碳材料的复合策略, 对2D 光热膜表面微结构进行调控, 显著提高了水蒸发效率 (j。化学。A, 2018, 6, 963-971)。在此基础上, 该团队近期进一步进行了空心锥形光热膜的研究, 利用其独特的三维结构, 通过改善光热膜体系的传质和传热性能, 获得了更高的光热水蒸发效率 (j。化学。A, 20186, 9874-9881)。   受收集声波耳廓结构的启发, 并借鉴太阳灶结构, 膜分离与催化研究组王玉超博士和江河清研究员设计了具有宏观尺寸的3D 空心锥形光热膜, 其光热转化效率超过 93%, 超过了常见2D 平面膜水蒸发速率的极限值。在对胶州湾实际海水的测试表明, 3D 空心锥形光热膜不仅表现出较好的稳定性,同时其蒸发效率是自然蒸发的 3.5 倍。在蒸发过程中盐会在锥形卷筒上层析出,不会覆盖整个光热膜,这不仅有助于盐的富集回收,同时可以保持光热性能的稳定。详细研究表明 3D 空心锥形光热膜超高光热蒸发性能主要是通过三个方面实现: ( 1 )特定的几何外形可以将光线限域在锥形卷筒内部,通过光的多步反射,实现光热卷筒对太阳光的高效吸收,平均吸光率超过 99% ;( 2 ) 3D 空心锥形卷筒不需要借助额外的隔热材料降低向水体中的热流失,也不需要借助其他材料进行水的传导,而是通过改变卷筒在水中的高度,调控与水的接触面积,减少热量流失,实现理想的蒸发界面限域加热;( 3 ) 3D 光热锥形卷筒结构的设计使实际蒸发面积不同于太阳光的辐照面积,显著增大了实际蒸发面积。该工作为 3D 光热膜的开发设计提供了实验基础,有望推动太阳光驱动海水淡化技术的快速发展。

相关报告
  • 《青岛能源所开发出功能钙钛矿氧化物多孔膜及节能再生技术》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-02-21
    • 钙钛矿氧化物具有独特的光电及催化活性,在高温催化、气体分离及光催化等领域具有广泛的应用前景。青岛能源所膜分离与催化研究组前期在新型钙钛矿氧化物开发及其催化-膜分离性能研究方面开展了大量工作。近期,该研究组王玉超副研究员采用钙钛矿氧化物La0.7Sr0.3CoO3(LSCO)多孔膜,不仅能够促进高效的太阳光驱动水蒸发,同时可催化降解生物污染物,实现多孔膜的节能再生。   自然水域中往往存在藻类等生物污染物,以及种类繁多的有机污染物。在太阳光驱动的蒸发过程中,污染物会在光热膜中富集生长,造成膜污染,导致膜材料的性能下降。高温降解能够有效去除生物以及有机污染物,是实现膜再生的理想手段。但污染物热分解过程需要较高温度,从而造成能源的巨大耗费。而降低污染物燃烧分解温度能够有效降低能耗,实现膜材料的节能再生,推动光热材料在实际水环境中的应用。   该研究组负责人江河清研究员提出同时利用钴基钙钛矿的催化和光热性能,开发多功能钙钛矿氧化物多孔膜。在以水藻、三聚氰胺为污染物的测试中,LSCO多孔膜显著降低了附着其上的污染物的燃烧分解温度,减少了多孔膜在燃烧过程中再生能耗,达到节能再生的目的。由于钙钛矿氧化物多孔膜高的热稳定性,在多次膜再生循环后性能几乎可以完全恢复。该工作巧妙利用钙钛矿氧化物的光热和催化性能,解决了光热膜在实际应用中的生物污染问题。   该研究工作获得了国家自然科学基金、山东省自然科学基金项目的支持。相关研究结果已发表在Nano Energy杂志上(Nano Energy, 2020, 70, 104538)。(文/图 王玉超)   原文链接   https://www.sciencedirect.com/science/article/pii/S2211285520300951   Multifunctional Perovskite Oxide for Efficient Solar-driven Evaporation and Energy-Saving Regeneration    图1.钙钛矿氧化物多孔膜微结构在生物污染和节能再生过程中的变化  
  • 《青岛能源所开发出新型生物质基碳材料负载催化剂制备方法》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-07-27
    • 杂原子掺杂碳材料,由于其大比表面积、高孔隙、良好的电子传导性以及热、机械稳定性等特点,已被广泛应用于催化、能源、生命科学等领域。传统的制备方法往往都以不可再生碳源作为原料,制备过程一般要加入昂贵的模板、活化剂及杂原子源等。近年来,随着能源危机的日益凸显,以自然界中廉价易得、可再生的生物质为原料制备功能性生物质基碳材料受到科研工作者的日益关注。   自2017年以来,中国科学院青岛生物能源与过程研究所研究员杨勇带领的低碳催化转化研究组以竹笋为材料,通过简单水热碳化过程实现了N,O双杂原子掺杂的生物质碳材料的绿色制备。制备过程中以水为介质,无需添加活化剂和额外杂原子源,操作简便、绿色环保。所制得的碳材料比表面积高(>1000 m2g-1),孔容大(0.84 cm3g-1),N含量高(3.32 wt%),且具有多级孔(微-介-大孔)结构。同时,以该碳材料为载体,通过浸渍还原法制备出粒径分布均匀、高度分散负载金属Pd纳米结构催化剂Pd/N,O-Carbon,并应用于系列炔烃的官能团化转化反应。研究发现,碳结构中N原子的掺杂有效促进了金属Pd纳米颗粒在载体表面的分散和稳定,并在一定程度上调节金属Pd纳米颗粒的电子性能和与载体的相互作用。这种载体与金属纳米颗粒间的协同效应极大提高了该催化剂在炔烃高选择性转化及官能团化中的催化性能。相关研究结果分别申请专利一项并发表在ChemSusChem (2017, 10, 3427-3434); Catalysis Science & Technology (2018, 8, 1039-1050); Catalysis Today (2018, DOI: 10.1016/j.cattod.2018.04.036) 等国际期刊上。   从经济和可持续发展的角度出发,开发高活性高稳定性的廉价和储量丰富的非贵金属替代稀有贵金属催化剂,实现重要能源和化工过程的高效转化是目前催化科学研究的热点和挑战之一。在前期研究基础上,该研究组继续以竹笋和廉价、低毒的非贵金属钴盐为原料,通过优化和调控制备方法和策略,构建了一类新型杂原子(N,O,或P)掺杂的具有独特核壳结构的Co纳米颗粒催化剂。研究人员充分利用生物质竹笋本身富含的杂原子源(氨基酸、蛋白质等),在没有外加入模板和活化剂的条件下,开发了一条简单、绿色并可放大制备的生物质基碳材料负载Co纳米催化剂的制备方法。所制备的催化剂具有高比表面积、大孔容、分级孔等结构特点。   通过适当调变制备条件参数,研究人员分别制备杂原子掺杂碳层包埋钴纳米颗粒核壳结构催化剂(Core-Shell Co@NPC)和钴氧化物包裹金属Co纳米颗粒负载杂原子掺杂碳杂化材料催化剂(Core-Shell Co@CoOx/NC)(如图1所示)。两类纳米结构催化剂对芳硝基化合物直接加氢还原(以氢气为还原剂)或氢转移还原(以甲酸或甲酸铵为还原剂)合成苯胺类衍生物反应表现出优异的催化活性、化学选择性和宽广底物普适性。进一步研究发现,Co纳米颗粒催化剂也对硝基化合物一锅法还原胺化及甲酰化反应同样表现出优异的催化活性。所制得的芳香族胺类及衍生物在精细化工、药物化学及材料科学领域均具有广泛的应用(如图2所示)。此外,催化剂构效关系研究表明,生物质基碳材料结构中所“嵌入”的杂原子不仅可作为络合位点,同时又可作为活化底物位点,这种“协同”作用极大地改善了催化剂反应活性和稳定性。同时,该类催化剂具有一定的磁性特征,可利用外加磁场实现催化剂的简便分离回收和再利用。相关研究结果近期申请专利三项,并分别发表在Green Chemistry (2018, 20, 2821-2828),Green Chemistry (2018, DOI: 10.1039/C8GC01374H),Chemical Communications(2018, DOI: 10.1039/c8cc05285A)上。该研究工作不仅为硝基芳烃的还原转化提供一条绿色、温和的反应路线,也为生物质基碳材料负载非贵金属催化剂的设计与合成提供了新思路。   上述研究工作得到了青岛能源所启动资金的大力支持。   相关发表论文及链接:   1.Guijie. Ji, Yanan Duan, Saochun Zhang, Benhua Fei, Xiufang Chen, Yong Yang, Selective Semihydrogenation of Alkynes Catalyzed by Pd Nanoparticles Immobilized on Heteroatom- Doped Hierarchical Porous Carbon Derived from Bamboo Shoots, ChemSusChem 2017, 10, 3427-3434. (https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201701127)   2.Yanan Duan, Guijie Ji, Shaochun Zhang, Xiufang Chen, Yong Yang, Additive-modulated switchable reaction pathway in the addition of alkynes with organosilanes catalyzed by supported Pd nanoparticles: hydrosilylation versus semihydrogenation, Catal. Sci. Technol. 2018, 8, 1039-1050. (http://pubs.rsc.org/en/content/articlelanding/2018/cy/c7cy02280h/ unauth#!divAbstract)   3.Guijie Ji, Yanan Duan, Shaochun Zhang, Yong Yang, Synthesis of benzofurans from terminal alkynes and iodophenols catalyzed by recyclable palladium nanoparticles supported on N,O-dual doped hierarchical porous carbon under copper- and ligand-free conditions, Catalysis Today, 2018, 10.1016/j.cattod.2018.04.036. (https://www.sciencedirect.com/science/ article/pii/S0920586118304814)   4.Yanan Duan, Tao Song, Xiaosu Dong, Yong Yang, Enhanced catalytic performance of cobalt nanoparticles coated with a N,P-codoped carbon shell derived from biomass for transfer hydrogenation of functionalized nitroarenes, Green Chem. 2018, 20, 2821-2828. (http://pubs.rsc.org/en/content/articlelanding/2018/gc/c8gc00619a/unauth#!divAbstract)   5.Tao Song, Peng Ren, Yanan Duan, Zhaozhan Wang, Xiufang Chen, Yong Yang, Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes, Green Chemistry, 2018, 10.1039/C8GC01374H. (https://pubs.rsc.org/en/content/articlelanding/2018/gc/c8gc01374h/unauth#!divAbstract)   6.Xiaosu Dong, Zhaozhan Wang, Yanan Duan, Yong Yang, One-pot selective N-formylation of nitroarenes to formamides catalyzed by core–shell structured cobalt nanoparticles, Chem. Commun., 2018, 10.1039/C8CC05285A. (http://pubs.rsc.org/en/content/ articlelanding/2018/cc/c8cc05285a#!divAbstract)   相关申请专利:   1.一种借氢还原偶联合成亚胺和胺类化合物的方法(申请号:201810430256.4)   2.一种芳胺类化合物的制备方法(申请号:201810145587.0)   3.一种氮掺杂生物质基碳材料负载催化剂及其制备和应用(申请号:201810365971.4)   4.一种通过无铜无配体钯催化剂合成苯并呋喃衍生物的方法(申请号:201810353093.4)