《微生物所温廷益研究组合作揭示微生物适应临近空间极端环境的代谢变化与生存机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-05-18
  •  近日,中国科学院微生物研究所温廷益研究团队在Science of the Total Environment 发表题为“Adaptive mechanisms of Bacillus to near space extreme environments” 的论文。文章报道了地球临近空间极端环境对大肠杆菌、芽胞杆菌和酵母等典型微生物的生存影响,首次揭示了枯草芽胞杆菌适应临近空间极端环境的代谢变化与生存机制。 

      地球临近空间是指离地表20-100公里之间的大气区域。该区域辐射水平高,大气压低,具有研究生命生存和进化的类火星环境条件。探究微生物在临近空间的生存和适应机制,有助于理解地球生命的生存极限。温廷益研究团队与中国科学院地质与地球物理研究所等研究团队合作,利用临近空间天体生物学综合飞行实验平台CAS-BAP(Chinese Academy of Sciences Balloon-Borne Astrobiology Platform),在我国内蒙古海拔32公里区域开展了多种典型地表微生物的飞行实验。本次实验暴露时长3小时17分钟,并针对暴露后样品的存活率、代谢产物、基因组、转录组和蛋白组等进行了综合分析。筛选出暴露存活的芽胞杆菌,并获得肌苷合成明显变化的突变菌,首次证明了临近空间可作为一种新的微生物进化平台。多组学分析显示突变株的基因组、转录组和蛋白质组水平发生级联变化,且EMP、PPP和嘌呤合成相关途径的代谢通量显著改变,从而增加/减少肌苷的生物合成。进一步分析表明,与翻译、分子伴侣、细胞壁/膜、孢子形成、DNA复制/修复和抗氧化等环境适应相关蛋白的表达显著上调,使突变株能够有效修复DNA/蛋白质损伤,提高对抗环境胁迫的生存能力,为揭示微生物适应极端环境的生存机制提供了新的认识。

      微生物研究所副研究员邓爱华为第一作者,温廷益研究员和邓爱华副研究员为共同通讯作者。本研究工作得到中国科学院A类战略性先导科技专项“鸿鹄专项”(XDA17010503)、国家自然科学基金项目(31570083, 31870070)和中国科学院绿色过程制造创新项目(IAGM-2019-A02)共同资助。

      全文链接:https://doi.org/10.1016/j.scitotenv.2023.163952

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202305/t20230518_6758285.html
相关报告
  • 《微生物所叶健团队揭示红光调控植物抗虫媒病毒新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-01-13
    • 病害三角(disease triangle)是描述疾病流行规律的理论,该理论指出“病害三要素”为致病病原生物、易感宿主和适合的环境条件三者相互作用才能引起侵染性病害。已知超过1480种植物病毒中,近80%由媒介昆虫传播,植物虫传病毒是制约我国农作物高产稳产的主要因素之一。以往作物病毒病害的研究注重于病毒和植物宿主两个方面,而实际上参与病毒传播、病害发生的因子还有传毒媒介昆虫以及光照、温度、气候、生物周期节律等环境因子。作为人类赖以生存的最重要生化反应,植物光合作用主要吸收红光和蓝紫光并存储为化学能,最终为人类和其他动物提供必需的食物和能量。光作为主要的环境因子,不仅调控植物生长发育的每个环节,而且同病害的流行爆发紧密相关。然而光是如何影响植物抗病性,病原微生物又是如何适应宿主抗性机制从而促进自身的传播等问题,尚亟待得到科学解答。 近日,中国科学院微生物所叶健课题组在PLoS Pathogens在线发表了题为Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly的研究论文。该研究发现植物双生病毒卫星DNA编码的βC1蛋白可以通过靶向光信号途径的PIF转录因子家族调控的虫媒病毒抗性,促进虫媒病毒的快速传播,揭示了光调节双生病毒-烟粉虱-植物三者互惠共生的新机制。   本研究在前期工作的基础上,进一步以双生病毒中国番茄黄化曲叶病毒TYLCCNV与卫星DNA形成的侵染复合物为研究对象,发现双生病毒卫星感病植物和对媒介昆虫烟粉虱的吸引作用只有在光照条件下才会发生,而在黑暗条件下不会发生(图1A和1B)。已有研究表明βC1是病毒编码的关键决定因子,进一步利用单色光LED灯箱进行昆虫双选择实验,发现βC1转基因植物只有在红光和含有红光的白光条件下发生,而在黑暗、远红光和蓝光条件下没有显著差异 (图1C)。烟粉虱等大多数昆虫的视觉系统缺乏红光受体,是“红色色盲”,所以这种光依赖的烟粉虱选择行为改变主要是病毒感染植物后影响了昆虫嗅觉识别植物。 当植物受到昆虫取食后,会产生一系列的化学挥发物来调控昆虫的行为来趋避食草昆虫,其中萜烯类化合物 (Terpenes) 是植物挥发物中最丰富的一类化合物,研究报道部分倍半萜和单萜会趋避昆虫。该研究通过酵母双杂交筛选实验鉴定到光信号中的关键蛋白光敏色素互作蛋白 (PHYTOCHROME-INTERACTING FACTOR 3, PIF3) 可以与βC1蛋白互作,进一步Co-IP实验证明PIF3与βC1在光照和黑暗条件下均可以在植物体内互作 (图2A)。PIFs蛋白可以直接结合萜烯合酶 (Terpene synthase,TPS) 基因的启动子促进其转录 (图2B和2C),因此在PIF过表达的植物中,介体昆虫烟粉虱的产卵量减少、伪蛹发育缓慢 (图2D和2E),说明PIFs蛋白具有直接的抗虫作用。通过竞争性BiFC和pull-down实验发现βC1蛋白可以通过干扰PIF蛋白二聚体的形成不同程度的抑制其转录激活活性 (图2C)。 植物激素茉莉酸(jasmonic acid, JA)是一种介导植物抗虫的重要激素,转录因子MYCs是JA途径中的关键调控因子。MYC家族转录因子调控下游多种抗虫相关次生代谢物质的合成代谢相关基因,包括TPS基因。该课题组早期研究发现双生病毒βC1可以靶标MYC2, 通过干扰其二聚体的形成抑制MYC2-介导植物抗虫反应,与其媒介昆虫烟粉虱形成的互惠共生关系(Li et al. Plant Cell 2014)。PIF蛋白参与植物多个信号通路以参与发育过程以及不同的胁迫响应,包括光和JA途径。研究报道AtPIF4与AtMYC2相互作用,该研究还发现AtPIFs-AtMYC2的互作在一定程度上抑制了TPS基因的表达,而βC1可以促进AtPIF4-AtMYC2异源二聚体的互作进而进一步抑制TPS的表达,促进昆虫的取食。结合以上研究结果该论文提出以下工作模型:在健康植物中,PIFs和MYC2形成同源二聚体,结合在TPS基因启动子的不同区域,共同调节TPS基因表达,从而趋避烟粉虱;当植物受到双生病毒感染后,βC1一方面可以抑制PIFs或MYC2同源二聚体的形成,一方面又可以促进PIF- MYC2异源二聚体的形成,最终抑制了植物对烟粉虱的抗性反应,促进烟粉虱的取食,促进病毒的传播与扩散。本研究解析了光和JA信号共同调节病毒-昆虫-植物三者互作的新机制,为防控虫媒病害提供新的靶点,也为实现利用单色LED灯绿色防控双生病毒病害提供理论依据。 该文章由叶健课题组的副研究员赵平芝、助理研究员张璇和已毕业硕士研究生龚雨晴为共同第一作者,课题组王端、王宁、孙艳伟、高连博为文章的共同作者。值得一提的是,该研究得到了方荣祥院士、北京大学邓兴旺院士、美国加州大学戴维斯分校Daniel J. Kliebenstein教授、中国农业科学院植物保护研究所周雪平教授、南京农业大学教授许冬清、浙江大学刘树生教授的大力支持,也为该文的共同作者,叶健研究员为通讯作者。感谢清华大学陈浩东教授和中国农业大学李继刚教授提供了宝贵的抗体材料。该研究受到国家自然科学基金重点项目、国家重点研究和发展计划生物安全专项、国家相关人才计划等项目的支持。
  • 《研究揭示微生物如何在海底洋壳中生存》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-04-09
    • 伍兹霍尔海洋研究所(WHOI)的科学家们揭示了微生物是如何在数千英尺深的海底岩石中生存的。这项研究已发表在《自然》(Nature)期刊上。研究成果首次分析了来自深海海底的含有制造蛋白质指令的活性遗传物质——信使RNA,并结合酶活性的测量、显微镜、培养物和生物标记物分析,提供了微生物群落多样性的证据,这些微生物从活的和死的生物体中获取碳。 为找出生活在极端环境下的微生物,了解它们是如何生存的,科学家们乘坐科考船前往“亚特兰蒂斯岸”的水下山脊,历时三个月收集了来自下海底洋壳的岩石样本。该山脊横穿南印度洋,构造活动使得海底洋壳得以暴露,为在该领域开展研究提供了便利。WHOI的微生物学家Virginia Edgcomb提到,他们使用一种全新的混合方法,尽可能深入地研究这些样本。她是这个项目的负责人,也是这篇论文的合著者。 一些微生物似乎能在它们的细胞中储存碳,这样就可以应对碳短缺。还有一些研究表明,它们可以利用氮和硫来产生能量,生产维生素E和B12,循环利用氨基酸并从难分解的聚芳香烃中提取碳。这一罕见的观点扩展了对海底碳循环的看法。Edgcomb还提到,深层生物圈包括较浅的洋壳位置,即使代谢率非常低,也能产生数量可观的碳。 (刘思青 编译)