《芯片级光源的纳米和原子薄的材料先进技术》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2017-02-01
  • 当个人使用脸谱网或谷歌搜索时,信息处理发生在一个大数据中心。短距离的光互连可以提高这些数据中心的性能。目前的系统利用电子,这可能会导致过热和浪费电力。然而,利用光传输信息的计算机芯片和电路板之间可以提高效率。 华盛顿大学电气工程和物理学助理教授Arka Majumdar,材料科学与工程物理副教授小徐和他们的团队发现了一个重要的第一步,建立电泵浦奈米雷射(或来源)。这些激光器在集成的光子为基础的短距离光互连和传感器的发展是至关重要的。 研究小组证明这第一步通过腔增强型电致发光原子薄的单层材料。这种材料的厚度产生激光的关键组件之间的有效协调。两腔增强型电致发光材料将使节能的数据中心,支持高性能并行计算。
相关报告
  • 《让原子级厚度的材料更薄 只需两个钻石》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-09-18
    • 8月24日,国际学术期刊《自然·物理》在线刊发了电子科技大学夏娟研究员、王曾晖教授与合作者的研究成果《二硒化钨-二硒化钼双层异质结的层间强耦合及高压调控研究》。他们借助能产生百万大气压强的金刚石对顶砧(DAC)装置,针对仅有蝉翼千分之一厚度的二维异质结材料开展了极高压研究。 在研究中,科学家们巧妙地利用了二维异质结的结构特点,对仅有原子级厚度的纳米材料实现了高效压缩,并观察到了一系列新奇的物理现象。 重于泰山:金刚石压砧技术 “金刚石对顶砧装置在对微小样品施加超高压强方面,具有得天独厚的优势,是一项非常强大的实验手段。”夏娟说。 那么,金刚石对顶砧装置是如何产生超高压强的? 金刚石对顶砧装置的主要部分是两颗尖对着尖的钻石(金刚石压砧),以及包围住两颗金刚石尖顶(也称为砧面)之间极小空间的垫片。 “当我们推动金刚石压砧中的两个金刚石相向而行时,金刚石尖顶之间的空间被急剧压缩,空间中除了样品,还充满了液体传压介质(例如硅油)。”夏娟解释说,由于垫片就像一道箍一样,紧紧地箍住了这些液体传压介质令其无处释放,因此样品所在空间的压强就会急剧上升,从而在样品上施加一个巨大的静水压,类似于潜入深海时受到的不断增加的海水压强。 记者了解到,由于金刚石顶部砧面直径很小,通常只有几分之一毫米,即差不多4—8根头发丝的直径,因此可以把金刚石底部平面受到的压力高效集聚,从而在金刚石的顶部达到很高的压强。我们日常生活环境的压强是1个大气压,海底一万米的压强约为1000个大气压,而利用该装置则可轻松实现百万大气压的高压环境。 那么百万大气压究竟有多大呢?人们常开玩笑说“压力山大”,我们以泰山为例来估算一下。泰山主峰1450米高,以岩石密度为水的3倍计,则被压在山底下需要承受来自山体的压强为400多个大气压。因此,“重于泰山”其实远远不足以形容金刚石对顶砧产生的压强。 薄如蝉翼:新型二维异质结材料 二维材料是一类目前受到广泛关注的新型材料,其最显著的特点是可以薄到仅有原子级别,仍然能够保持优异的材料性能。那“原子级别”究竟是多薄呢?一般的蝉翼是几个微米的厚度(也就是头发丝的十分之一左右),而物理学家研究的二维材料一般是纳米级别的厚度,甚至不到蝉翼的千分之一。因此,“薄如蝉翼”其实远远不足以形容二维材料的薄。 那什么是二维异质结呢?“从结构上来说,可以理解为将不同的二维材料通过特定的方式堆垛起来,构成新的二维材料,类似于将两片(或多片)不同的‘蝉翼’贴在一起,形成一种新的‘复合蝉翼’。”王曾晖说。 对科学家来说,各种二维材料就像乐高积木一样:通过选择采用不同的二维材料、不同的堆垛方式,可以构成各类新奇的乐高作品——二维异质结。这就相当于可以人为地设计出几乎无限多种新型二维结构,而每种结构都可能具有不同的材料物理特性,因此在很多研究领域中,二维异质结都是一类非常具有潜力的新型材料结构。 以泰山之重压蝉翼之薄 那么,既然二维材料已经薄到原子级别了,还能够进一步压缩其厚度吗?专家给出了肯定的答案。 夏娟说:“这个研究,有点类似于把二维异质结这样的‘复合蝉翼’放到万吨水压机中间,利用重于泰山的极高压强来使两片‘蝉翼’贴合得更为紧密,从而改变两层‘蝉翼’之间的相互作用,并观测这一过程对整张‘复合蝉翼’性能的调控作用。只不过我们这个实验是在纳米尺度进行的。” 研究团队在实验过程中证实,尽管二维异质结的厚度已经在原子级别了,但是由于其结构的特点,仍然能够通过金刚石对顶砧装置产生的压强将其的厚度进一步压缩。当样品所处环境压强增加到一万个大气压左右时,研究者们成功观察到了二维异质结的能带结构及相关物理特性所发生的突变。 “虽然这个工作是非常基础的物理研究,但从应用角度来说,开展基于新型敏感材料在高压下的物理特性研究,对于开发新型超高压传感器,推动我国深地深海探测技术进步,加快页岩气等现代能源战略的产业发展,同样具有十分重要的科学意义和应用价值。”王曾晖说。
  • 《制造超薄电脑芯片的新材料》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-07-14
    • 越来越小,越来越紧凑——这是计算机芯片的发展方向,由工业驱动。这就是为什么所谓的2D材料被认为是最大的希望:它们尽可能薄,在极端情况下,它们只包含一层原子。这使得生产具有微小尺寸、高速和最佳效率的新型电子元件成为可能。 然而,有一个问题:电子元件总是由一种以上的材料组成。2D材料只有与合适的材料体系(如特殊的绝缘晶体)结合,才能得到有效利用。如果不考虑这一点,2D材料应该提供的优势是无效的。来自维也纳大学电气工程学院的一个团队正在《自然通讯》杂志上发表这些发现。 在原子尺度上达到线的末端 “今天的半导体工业使用硅和硅氧化物,”维恩大学微电子研究所的Tibor Grasser教授说。“这些材料具有非常好的电子性能。很长一段时间以来,这些材料的薄层被用来使电子元件小型化。这种方法在很长一段时间内都很有效,但在某种程度上,我们达到了自然极限。” 当硅层只有几纳米厚,以致只有几个原子层时,材料的电子性能就会严重恶化。“材料的表面表现与材料的主体不同——如果整个物体实际上只由表面组成,而不再有主体,它可以拥有完全不同的材料属性。” 因此,要想制造出超薄的电子元件,就必须改用其他材料。这就是所谓的2D材料发挥作用的地方:它们将优良的电子特性与最小的厚度结合在一起。 薄层需要薄绝缘体 “然而,事实证明,这些2D材料只是故事的前半部分,”Tibor Grasser说。“这些材料必须被放置在合适的基板上,并且在其之上还需要一层绝缘层——而且这种绝缘层必须非常薄并且质量非常好,否则你从2D材料中什么也得不到。”这就像开着一辆法拉利在泥泞的地面上,想知道为什么你不能创造一个速度记录。” 因此,在Tibor Grasser和Yury Illarionov附近,TU Wien的一个团队分析了如何解决这个问题。“工业上通常用作绝缘体的二氧化硅在这种情况下并不合适,”Tibor Grasser说。“它有一个非常无序的表面和许多自由的,不饱和键,干扰了二维材料的电子性质。” 最好是寻找一种有序的结构:该小组已经用含有氟原子的特殊晶体取得了优异的结果。带有氟化钙绝缘体的晶体管原型已经提供了令人信服的数据,其他材料仍在分析中。 “新的2D材料正在被发现。这很好,但是根据我们的研究结果,我们想要表明仅靠这一点是不够的,”Tibor Grasser说。“这些新型导电2D材料还必须与新型绝缘体结合。只有这样,我们才能真正成功地生产出新一代高效、强大的微型电子元件。”