《芯片级光源的纳米和原子薄的材料先进技术》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2017-02-01
  • 当个人使用脸谱网或谷歌搜索时,信息处理发生在一个大数据中心。短距离的光互连可以提高这些数据中心的性能。目前的系统利用电子,这可能会导致过热和浪费电力。然而,利用光传输信息的计算机芯片和电路板之间可以提高效率。 华盛顿大学电气工程和物理学助理教授Arka Majumdar,材料科学与工程物理副教授小徐和他们的团队发现了一个重要的第一步,建立电泵浦奈米雷射(或来源)。这些激光器在集成的光子为基础的短距离光互连和传感器的发展是至关重要的。 研究小组证明这第一步通过腔增强型电致发光原子薄的单层材料。这种材料的厚度产生激光的关键组件之间的有效协调。两腔增强型电致发光材料将使节能的数据中心,支持高性能并行计算。
相关报告
  • 《纳米材料可以帮助开发新的计算机技术和医疗设备》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-07-23
    • 纳米材料是在具有特殊性质的分子或原子的尺度上操纵的材料。石墨烯是一片碳,具有一层原子的厚度。它是一种开创性的纳米材料,因为它可以很容易地导电并且还具有显着的柔韧性和机械强度。 相反,难以大规模生产石墨烯并同时保持其非凡的性质,因此难以将该纳米材料用于日常应用。 罗切斯特大学生物学副教授Anne S. Meyer和她在荷兰代尔夫特理工大学的同事描述了一种克服这一缺点的方法。该研究已在ChemOpen期刊上报道。 该团队演示了如何使用创新技术生产石墨烯材料。在该方法中,氧化石墨与细菌混合。这项新技术提供了一种节省时间,更经济,更环保的方法,可以对抗使用化学过程合成的石墨烯材料。这一最新突破有助于创建先进的医疗设备和计算机技术。 石墨烯是从石墨材料中获得的,石墨材料可以用简单的铅笔找到。尽管具有单个原子的厚度,但石墨烯是科学家们已知的最薄但最强的2D材料。 2010年诺贝尔物理学奖授予英国曼彻斯特大学的研究人员,他们突破了石墨烯的发现。然而,研究人员利用胶带制造石墨烯的方法只产生了极少量的材料。 因此,为了制造更大量的石墨烯材料,Meyer及其同事从一小瓶石墨开始,最终通过剥落石墨,即脱落材料层,生产氧化石墨烯(GO)。然后研究人员将GO与细菌Shewanella混合,让前体材料和细菌的烧杯静置过夜。在此期间,GO被细菌还原为石墨烯材料。 “氧化石墨烯易于生产,但由于其中含有所有氧基团,因此不太导电,”迈耶说。 “这种细菌会去除大部分氧气,使其变成导电材料。” 除了导电之外,与化学方法产生的石墨烯相比,在Meyer实验室中合成的细菌生产的石墨烯材料也更薄且更稳定。此外,它还可以存储更长的时间,因此非常适合许多不同的应用,包括导电油墨和场效应晶体管(FET)生物传感器。 FET生物传感器实际上是能够检测生物分子的装置,并且可以用于例如对糖尿病患者进行实时葡萄糖监测。 “当生物分子与装置结合时,它们会改变表面的电导,发出分子存在的信号,”迈耶说。 “为了制造出良好的FET生物传感器,您需要一种高导电性的材料,但也可以进行修饰以与特定分子结合。” 已经被细菌减少的GO可以说是理想的材料,因为它具有高导电性和轻质性,同时,它特征性地保留了可用于结合靶分子的最小数量的氧基团。 通过细菌产生的石墨烯材料也可以形成导电油墨的基础,而导电油墨又可以用于制造更快和更有效的电路板,计算机键盘或像用于对汽车挡风玻璃进行除霜的细线。 Meyer补充说,与传统技术相比,导电油墨提供了“更容易,更经济的生产电路的方式”。导电油墨甚至可以用于在非传统材料(如纸张或织物)上制作电路。
  • 《制造超薄电脑芯片的新材料》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-07-14
    • 越来越小,越来越紧凑——这是计算机芯片的发展方向,由工业驱动。这就是为什么所谓的2D材料被认为是最大的希望:它们尽可能薄,在极端情况下,它们只包含一层原子。这使得生产具有微小尺寸、高速和最佳效率的新型电子元件成为可能。 然而,有一个问题:电子元件总是由一种以上的材料组成。2D材料只有与合适的材料体系(如特殊的绝缘晶体)结合,才能得到有效利用。如果不考虑这一点,2D材料应该提供的优势是无效的。来自维也纳大学电气工程学院的一个团队正在《自然通讯》杂志上发表这些发现。 在原子尺度上达到线的末端 “今天的半导体工业使用硅和硅氧化物,”维恩大学微电子研究所的Tibor Grasser教授说。“这些材料具有非常好的电子性能。很长一段时间以来,这些材料的薄层被用来使电子元件小型化。这种方法在很长一段时间内都很有效,但在某种程度上,我们达到了自然极限。” 当硅层只有几纳米厚,以致只有几个原子层时,材料的电子性能就会严重恶化。“材料的表面表现与材料的主体不同——如果整个物体实际上只由表面组成,而不再有主体,它可以拥有完全不同的材料属性。” 因此,要想制造出超薄的电子元件,就必须改用其他材料。这就是所谓的2D材料发挥作用的地方:它们将优良的电子特性与最小的厚度结合在一起。 薄层需要薄绝缘体 “然而,事实证明,这些2D材料只是故事的前半部分,”Tibor Grasser说。“这些材料必须被放置在合适的基板上,并且在其之上还需要一层绝缘层——而且这种绝缘层必须非常薄并且质量非常好,否则你从2D材料中什么也得不到。”这就像开着一辆法拉利在泥泞的地面上,想知道为什么你不能创造一个速度记录。” 因此,在Tibor Grasser和Yury Illarionov附近,TU Wien的一个团队分析了如何解决这个问题。“工业上通常用作绝缘体的二氧化硅在这种情况下并不合适,”Tibor Grasser说。“它有一个非常无序的表面和许多自由的,不饱和键,干扰了二维材料的电子性质。” 最好是寻找一种有序的结构:该小组已经用含有氟原子的特殊晶体取得了优异的结果。带有氟化钙绝缘体的晶体管原型已经提供了令人信服的数据,其他材料仍在分析中。 “新的2D材料正在被发现。这很好,但是根据我们的研究结果,我们想要表明仅靠这一点是不够的,”Tibor Grasser说。“这些新型导电2D材料还必须与新型绝缘体结合。只有这样,我们才能真正成功地生产出新一代高效、强大的微型电子元件。”