《Doped SnO2 thin films fabricated at low temperature by atomic layer deposition with a precise incorporation of niobium atoms》

  • 来源专题:现代化工
  • 编译者: 武春亮
  • 发布时间:2024-06-26




















  • Skip to content

    Accessibility Links

    Skip to content
    Skip to search IOPscience
    Skip to Journals list
    Accessibility help











    IOP Science home





    Accessibility Help







    Search


    Journals


    Journals list
    Browse more than 100 science journal titles


    Subject collections
    Read the very best research published in IOP journals


    Publishing partners
    Partner organisations and publications


    Open access
    IOP Publishing open access policy guide


    IOP Conference Series
    Read open access proceedings from science conferences worldwide




    Books


    Publishing Support



    Login

    IOPscience login / Sign Up








    Close

    Click here to close this panel.



    Search all IOPscience content








    Article Lookup

    Select journal (required)

    Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004)

    Volume number:

    Issue number (if known):

    Article or page number:





















    Nanotechnology


















    Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
    Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
    We are proudly declaring that science is our only shareholder.















    ACCEPTED MANUSCRIPT




    Doped SnO2 thin films fabricated at low temperature by atomic layer deposition with a precise incorporation of niobium atoms


    Getaneh Diress Gesesse1, Damien Coutancier2, Mirella Al Katrib3, Frédérique Donsanti3, Muriel Bouttemy4 and Nathanaelle Schneider2




    Accepted Manuscript online 24 June 2024
    ?



    © 2024 IOP Publishing Ltd



    What is an Accepted Manuscript?




    DOI 10.1088/1361-6528/ad5afd

    Download Accepted Manuscript PDF















    Figures

    Skip to each figure in the article




    Tables

    Skip to each table in the article




    References





    Citations





    Article data

    Skip to each data item in the article

    What
    is article data?



    Open science






















    Article metrics














    Submit

    Submit to this Journal




    Permissions

    Get permission to re-use this article




    Share this article































    Article and author information




    Author e-mailsn.schneider@cnrs.fr
    Author affiliations1
    Institut Photovolta?que d'Ile-de-France, 18 Boulevard Thomas Gobert, Palaiseau, 91120, FRANCE
    2
    UMR-IPVF, CNRS, 18 boulevard Thomas Gobert, Palaiseau, 91120, FRANCE
    3
    Institut Photovolta?que d'Ile-de-France, 18 boulevard Thomas Gobert, Palaiseau, 91120, FRANCE
    4
    Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), 45 avenue des Etats-Unis, Versailles, 78035, FRANCE

    ORCID iDsGetaneh Diress Gesesse https://orcid.org/0000-0001-9742-4536Nathanaelle Schneider https://orcid.org/0000-0001-7749-2400


    Dates

    Received 20 March 2024
    Revised 4 June 2024
    Accepted 24 June 2024
    Accepted Manuscript online 24 June 2024





















    Journal RSS





    Sign up for new issue notifications










    10.1088/1361-6528/ad5afd

    Abstract



    Nb-doped SnO2 (NTO) thin films were synthesized by atomic layer deposition technique at low temperature (100 °C). For an efficient incorporation of the Nb atoms, i.e. fine control of their amount and distribution, various supercycle ratios and precursor pulse sequences were explored. The thin film growth process studied by in-situ QCM revealed that the Nb incorporation is highly impacted by the surface nature as well as the amount of species available at the surface. This was confirmed by the actual concentration of the Nb atom incorporated inside the thin film as determined by XPS. Highly transparent thin films which transmit more than 95% of the AM1.5 global solar irradiance over a wide spectral range (300-1000 nm) were obtained. In addition, the Nb atoms influenced the optical band gap, conduction band, and valence band levels. While SnO2 thin film were too resistive, films tuned to conductive nature upon Nb incorporation with controlled concentration. Optimal incorporation level was found to be <1 at.% of Nb, and carrier concentration reached up 2.5x1018/cm3 for the as-deposited thin films. As a result, the high optical transparency accompanied with tuned electrical property of NTO thin films fabricated by ALD at low temperature paves the way for their integration into temperature-sensitive, nanostructured optoelectrical devices.




    Export citation and abstract

    BibTeX
    RIS







    During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.


    As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.


    After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0


    Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.





















    Back to top









    10.1088/1361-6528/ad5afd

    You may also like

    Journal articles



    Thermophysical properties and atomic structure of liquid Zr–Nb alloys investigated by electrostatic levitation and molecular dynamics simulation


    Two-dimensional intrinsic ferromagnetic materials of Janus 2H-NbXY (X, Y = S, Se and Te, X ≠ Y) monolayers with high Curie temperature and large magnetic anisotropy


    Primary radiation damage of Zr-0.5%Nb binary alloy: atomistic simulation by molecular dynamics method


    Epitaxial growth of Li4Ti5O12 thin films using RF magnetron sputtering


    Distribution of niobium atoms in self-interstitial configurations in binary alloys Zr–(0.5–3)%Nb after passing the atomic displacements cascade


    First-principles molecular dynamics study of water dissociation on the γ-U(1?0?0) surface



































    IOPscience


    Journals


    Books


    IOP Conference Series


    About IOPscience


    Contact Us


    Developing countries access


    IOP Publishing open
    access policy


    Accessibility




    IOP Publishing


    Copyright 2024 IOP Publishing


    Terms and Conditions


    Disclaimer


    Privacy
    and Cookie Policy




    Publishing Support


    Authors


    Reviewers


    Conference
    Organisers












    This site uses cookies. By continuing to use this
    site you agree to our use of cookies.



    IOP Publishing Twitter page






    IOP Publishing Facebook page






    IOP Publishing LinkedIn page






    IOP Publishing Youtube page






    IOP Publishing WeChat QR code






    IOP Publishing Weibo page























  • 原文来源:https://iopscience.iop.org/article/10.1088/1361-6528/ad5afd
相关报告
  • 《Tungsten Oxide Buffer Layers Fabricated in an Inert Sol-Gel Process at Room-Temperature for Blue Organic Light-Emitting Diodes》

    • 来源专题:绿色印刷—OLED
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • WO3 deposition from tungsten ethoxide precursor solutions at room temperature is demonstrated. The W(OEt)6 precursor can be converted under inert conditions and hence avoids sample contamination with oxygen, opening a pathway to more stable devices. The stoichiometry of all WO3 layers and the optoelectronic performance of the respective SMOLEDs well match thermally evaporated WO3 and its corresponding SMOLEDs. The solution processed WO3 hole injection layers enable the fabrication of blue phosphorescent OLEDs with low onset voltage and current efficiencies of up to 14 cd A−1.
  • 《High-mobility ultrathin semiconducting films prepared by spin coating》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics1, 2, 3. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication4, 5, 6, 7, 8, 9, 10, 11. Here we demonstrate a technique for spin coating ultrathin (approx50 Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105 A cm-2) and mobilities greater than 10 cm2 V-1 s-1—an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells12, thermoelectrics13 and memory devices14).