《生物物理所等首次解析2型单纯疱疹病毒核衣壳高分辨率结构》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-08-02
  • 近日,中国科学院院士饶子和团队研究员王祥喜、湖南师范大学教授刘红荣、中国科学院生物物理研究所研究员章新政、中国食品与药品检定研究院教授王军志等合作,首次解析了疱疹病毒α家族的2型单纯疱疹病毒(HSV-2)核衣壳的3.1Å原子分辨率结构,阐明了核衣壳蛋白复杂的相互作用方式和精细的结构信息,并提出了疱疹病毒核衣壳的组装机制,为进一步研究病毒核衣壳与包膜蛋白的组装以及疱疹病毒的抗病毒治疗奠定了基础。相关研究成果以 Cryo-EM structure of a Herpesvirus capsid at 3.1Å 为题,于4月6日发表在《科学》(Science)上。

      疱疹病毒是在世界范围内广泛传播的一大类病毒,包含病毒种类众多,能够感染人类在内的多种哺乳动物。疱疹病毒在感染人体后可引发口腔和生殖器疱疹、水痘、带状疱疹等多种疾病,甚至引起多种免疫系统疾病、脑炎以及癌症等发生。疱疹病毒在世界范围内广泛传播,以单纯疱疹病毒为例:世界卫生组织2017年1月数据显示,全球约有42亿50岁以下的人(约80%)感染单纯疱疹病毒(HSV-1和HSV-2)。疱疹病毒有着独特的潜伏-再活化机制,可关闭其大部分活动状态的基因,只在特定的潜伏阶段打开特定的少数基因,并在合适的条件下恢复活性,重新进入增殖过程。这种潜伏-再活化机制使由疱疹病毒感染产生的疾病难以完全治愈,患者通常将终生携带病毒。

      疱疹病毒直径约为200nm,包含表面囊膜、蛋白质中间层(tegument proteins)、核衣壳颗粒和DNA核心四层结构。其中,核衣壳的直径约为125nm,在病毒的复制、组装、成熟以及侵染过程中都起到非常重要的作用。核衣壳包含A、B、C三类,三类核衣壳均为非标准正二十面体。A型核衣壳内部为空,不包含其他蛋白和病毒基因组;B型核衣壳内部包含支架蛋白;C型核衣壳内部包含病毒基因组,并可以逐渐成熟,成为具有侵染增殖活性的成熟病毒。过去20年,许多科学家试图用冷冻电镜技术解析疱疹病毒核衣壳的三维结构,然而由颗粒尺寸太大而导致的冰层过厚、信噪比降低和埃瓦尔德球效应,为高分辨信息的重构带来技术瓶颈。

      该研究以HSV-2衣壳颗粒为研究对象,利用最新开发的冷冻电镜单颗粒重构的计算方法“分区计算法”和“欠焦值修正法”,解析了3.1Å的核衣壳B颗粒,并搭建了结构模型,详细分析了核衣壳中各结构蛋白的构象变化与蛋白之间的相互作用关系,阐释了病毒核衣壳早期组装的机制,为后续研究核衣壳在神经细胞的运输提供了扎实的结构基础。针对“大尺度颗粒”的重构方法的应用,使得冷冻电镜结构解析的应用范围进一步推广,巨型病毒颗粒或亚细胞系级的超大蛋白质复合物的单颗粒重构可以实现近原子分辨率,将进一步推动结构生物学的进步与发展。鉴于核衣壳结构在疱疹病毒中的重要性和保守性,针对疱疹病毒核衣壳结构的药物设计与分子筛选,该研究所解析的核衣壳结构能够为广谱性药物的研制提供结构基础。

      饶子和团队博士研究生袁帅、王佳灵,章新政课题组博士研究生朱东杰为论文共同第一作者。王祥喜、章新政、刘洪荣、王军志、饶子和为论文共同通讯作者。生物物理所研究生王男、博士高强,湖南师范大学研究生陈文沅、唐豪参与了该研究部分工作。该研究得到了国家自然科学基金、国家重点基础研究发展计划、中国科学院战略性先导科技专项等的资助。

相关报告
  • 《生物物理所揭示RADAR超分子机器执行RNA脱氨和抗病毒免疫的机制》

    • 来源专题:生物育种
    • 编译者:季雪婧
    •     宿主细胞依赖多种免疫应答机制来对抗病毒感染。其中,针对核酸分子的免疫识别和操作是核心的抗病毒免疫策略,广泛存在于从细菌到哺乳动物等几乎所有宿主系统(图1)。相较于哺乳动物细胞稍显复杂的信号转导和调控,细菌往往更为简单高效,其编码的多种抗病毒免疫系统可直接对核酸分子进行切割或修饰(图1)。这种特点使得细菌免疫系统被广泛用于多种生物学工具的开发(如R-M和CRISPR-Cas等),促进整个生命医学领域的发展。   近期,Feng Zhang和Eugene Koonin团队鉴定出拥有全新核酸修饰活性的细菌免疫系统——RADAR(phage restriction by an adenosine deaminase acting on RNA)。RADAR是目前已知唯一可通过催化RNA的A-to-I(adenosine-to-inosine)脱氨来执行抗病毒功能的细菌防御系统,包含两种核心组分即RdrA(ATPase酶活性)和RdrB(腺苷脱氨酶活性),且这两种酶活性对于RADAR执行功能都是必须的。病毒感染后,RADAR被激活并广泛催化宿主及病毒的转录组RNA脱氨,造成被感染细胞的死亡,进而阻断病毒传播。RADAR在抗病毒免疫和RNA修饰方面展现出多种新颖特点,且有潜力被开发为新型的生物学工具,因此受到领域内的广泛关注。当前,关于RADAR的研究仅是冰山一角,还有较多核心科学问题亟待回答。   2月9日,中国科学院生物物理研究所研究员高璞团队在《细胞》(Cell)上,在线发表了题为Molecular basis of RADAR anti-phage supramolecular assemblies的研究论文。该研究发现了RADAR不同组分间的互作关系,揭示了其通过形成新型超分子复合体来实现RNA装载、运输和脱氨修饰的精妙偶联机制,拓展了科学家对细菌-病毒博弈复杂性的认知,并为开发基于RADAR的多种生物学工具提供了思路。   此前已知能催化RNA A-to-I脱氨的酶只有ADAR和ADAT两类,从进化上均属CDA超家族。而RADAR中的脱氨酶组分RdrB,在进化上却属于差别巨大的ADA超家族。RdrB的大小近3倍于经典ADA成员,除催化结构域外还存在多个作用未知的插入区域。为更好地剖析RdrB的功能,研究人员解析了RdrB的高分辨率冷冻电镜结构,发现了12个RdrB按照特定方式组装成一个闭合的笼状结构(~1.1 MDa)。该笼状结构拥有典型的正六面体排列,这在ADA和CDA超家族中均未被报道。这种精巧的组装依赖于催化结构域和多个插入区域的协同作用。进一步的功能实验表明,RdrB亚基间的互作对抗病毒功能至关重要。所有RdrB的催化口袋都朝向笼子的外侧,暗示其随时准备识别和催化临近的底物。   研究通过结构分析和生化验证发现,RdrB并不能有效结合含Stem-Loop元件的底物RNA。那么,对RADAR功能同样关键的另一个组分RdrA,是否会协助RdrB对RNA的修饰?科研人员解析了RdrA的结构发现,RdrA同时组装成单层的7聚体环(~0.75 MDa)和由两个7聚体环叠合而成的双层14聚体环(~1.5 MDa)。每个7聚体环都呈现为顶部结构稳定、而底部结构动态多变的特点,提示这两个区域潜在的不同功能。更重要的是,RdrA环中心形成了一个独特的通道,其直径和表面电荷均符合底物RNA的特点,提示该通道可能用于底物运输。后续生化实验表明,RdrA环与Stem-Loop RNA存在特异性结合,且RNA的存在可显著促进RdrA的ATPase酶活性。接下来,研究人员解析了RdrA与Stem-Loop RNA复合物的结构,捕捉到RNA装载到RdrA环的动态底部的构象。同时,研究发现RNA的装载与ATP的结合存在联动关系,提示RdrA可通过控制ATP水解来发挥其底物的装载和运输功能。   基于上述工作,科研人员基本确定了RdrA负责底物装载和运输,而RdrB负责底物脱氨的功能分工,但不清楚两者如何实现酶活偶联。研究人员通过生化实验确定了RdrA和RdrB之间存在直接互作,并进一步通过结构解析阐明了两者互作的分子细节。RdrA的7聚体环通过其结构稳定的顶部与RdrB笼进行对接,且RdrA环的底物运输通道恰好与RdrB的活性中心对齐,从而实现了底物装载、运输和修饰的巧妙偶联。结构分析还表明,1-12个RdrA 7聚体环可以通过动态的方式与RdrB笼对接。完整组装的RADAR复合体包含96个蛋白亚基,颗粒直径40 nm,仅蛋白部分的分子量达10.1 MDa。   除了RNA类底物,研究还发现RdrB及RdrA-RdrB复合物也可以催化多种小分子代谢类底物(ATP/dATP/ADP/dADP/AMP/dAMP/ adenosine)的脱氨反应。近期有工作表明,细胞内的小分子类inosine大量聚集,也会对细胞产生毒性并使其生长停滞。因此,RADAR对RNA类底物和小分子类底物的脱氨修饰,可能共同推动了其有效的抗病毒功能。   综上,该研究报道了RADAR系统复杂且新颖的超分子复合体组装细节,发现了RADAR实现底物装载、运输及修饰的多酶偶联机制,并为开发基于RADAR的base-editing工具、纳米颗粒载体和新型抗菌疗法等奠定了基础。
  • 《Cell | 高分辨率三维水平空间组——Open ST》

    • 编译者:李康音
    • 发布时间:2024-06-29
    • 2024年6月24日,柏林医学系统生物学研究所(BIMSB)的研究人员共同通讯在Cell发表题为Open-ST: High-resolution spatial transcriptomics in 3D的文章,报道了Open ST,一种新的三维高分辨率空间转录组学技术,开创了空间生物学的一个突破性进展,能以无与伦比的细节了解组织微环境,有望改变研究人员研究不同物种健康和疾病分子景观的方式。 Open ST的核心是巧妙地将Illumina flow cell改为空间转录组捕获平台,实现了亚细胞分辨率(~0.6μm),12 mm2捕获面积的成本效益价格低于130欧元。该方法结合了图案化flow cell技术和用户友好的3D打印切割指南,确保了精确一致的数据采集。值得注意的是,与其他替代品相比,它需要的测序深度要少得多,且同时保持高水平的转录组信息,从而提高了成本效益。这种简化的过程与标准实验室设备兼容,使研究人员能够高效地准备多个文库,使大规模研究变得可行。 Open ST通过其卓越的捕获效率而脱颖而出,在一系列组织中得到了证明——从胚胎小鼠头部到人类原发性肿瘤及其匹配的健康和转移淋巴结,它能够将高百分比的转录物独特地映射到基因组,同时最大限度地减少核糖体RNA的读取,突出了该平台的准确性。该方法在捕获效率方面始终优于或匹配10×Visium等技术,即使在不同的细胞组成下也有很好的表现。通过保持较低的读取与UMI比率,Open ST优化了库的复杂性,并有助于对新发现进行更深入的测序,同时保持成本可控。 一个关键的创新在于3D虚拟组织块(3D Virtual Tissue Block)的生成。Open ST利用HE成像和计算工具,将转录组学数据与组织学相结合,创建了组织结构和功能的交互式多维视图。这种虚拟重建超越了传统二维分析的限制,使科学家能够在真实的生物学背景下探索细胞及其分子图谱之间的空间关系。作者通过成功重建转移性淋巴结,揭示了传统2D方法无法获得的连续结构和潜在生物标志物验证了该方法。 Open ST的局部捕获能力体现在其以高分辨率准确定位标记基因的能力上,反映了细胞复杂的核质结构。这种精确度对于辨别细胞状态及其在组织发育、稳态和发病机制中的作用至关重要。通过严格的图像预处理和分割模型调整,Open ST提供单细胞分辨率的数据,有助于探索细胞异质性,并揭示组织特异性的细胞-细胞通信热点。Open ST在人类原发组织中的应用为免疫、基质和肿瘤群体的空间组织打开了一个新的视角。在头颈部鳞状细胞癌(HNSCC)中,该技术描绘了这些细胞的空间异质性,突出了原发性肿瘤及其转移之间的差异。Open ST揭示空间受限异质性的能力为细胞群体在原发性和转移性环境中如何不同地相互作用提供了一个精细的视角。通过准确地在3D肿瘤/淋巴结界面识别潜在的生物标志物,该研究提示了可以为个性化药物策略提供信息的治疗靶点和疾病机制。 通过与基于成像的空间转录组学技术进行严格的基准测试,Open ST成为一种可靠而强大的工具,能够以显著的准确性复制已知的细胞类型和基因表达模式。Open ST对3D虚拟组织块的探索不仅确定了细胞类型和基因程序,还阐明了受体-配体在其固有空间环境中的相互作用,加深了我们对细胞通讯动力学的理解。 总之,Open ST代表了空间转录组学的飞跃,提供了一个全面的开源解决方案,在三个维度上结合了易用性、可负担性、高分辨率和可扩展性。Open ST的应用范围从基础研究到临床研究,有望阐明组织生物学和疾病进展背后的复杂分子机制。随着该领域的不断发展,Open ST将成为推动免疫学及其他领域未来发现和进步的基石技术。