《Cell | 高分辨率三维水平空间组——Open ST》

  • 编译者: 李康音
  • 发布时间:2024-06-29
  • 2024年6月24日,柏林医学系统生物学研究所(BIMSB)的研究人员共同通讯在Cell发表题为Open-ST: High-resolution spatial transcriptomics in 3D的文章,报道了Open ST,一种新的三维高分辨率空间转录组学技术,开创了空间生物学的一个突破性进展,能以无与伦比的细节了解组织微环境,有望改变研究人员研究不同物种健康和疾病分子景观的方式。

    Open ST的核心是巧妙地将Illumina flow cell改为空间转录组捕获平台,实现了亚细胞分辨率(~0.6μm),12 mm2捕获面积的成本效益价格低于130欧元。该方法结合了图案化flow cell技术和用户友好的3D打印切割指南,确保了精确一致的数据采集。值得注意的是,与其他替代品相比,它需要的测序深度要少得多,且同时保持高水平的转录组信息,从而提高了成本效益。这种简化的过程与标准实验室设备兼容,使研究人员能够高效地准备多个文库,使大规模研究变得可行。

    Open ST通过其卓越的捕获效率而脱颖而出,在一系列组织中得到了证明——从胚胎小鼠头部到人类原发性肿瘤及其匹配的健康和转移淋巴结,它能够将高百分比的转录物独特地映射到基因组,同时最大限度地减少核糖体RNA的读取,突出了该平台的准确性。该方法在捕获效率方面始终优于或匹配10×Visium等技术,即使在不同的细胞组成下也有很好的表现。通过保持较低的读取与UMI比率,Open ST优化了库的复杂性,并有助于对新发现进行更深入的测序,同时保持成本可控。

    一个关键的创新在于3D虚拟组织块(3D Virtual Tissue Block)的生成。Open ST利用HE成像和计算工具,将转录组学数据与组织学相结合,创建了组织结构和功能的交互式多维视图。这种虚拟重建超越了传统二维分析的限制,使科学家能够在真实的生物学背景下探索细胞及其分子图谱之间的空间关系。作者通过成功重建转移性淋巴结,揭示了传统2D方法无法获得的连续结构和潜在生物标志物验证了该方法。

    Open ST的局部捕获能力体现在其以高分辨率准确定位标记基因的能力上,反映了细胞复杂的核质结构。这种精确度对于辨别细胞状态及其在组织发育、稳态和发病机制中的作用至关重要。通过严格的图像预处理和分割模型调整,Open ST提供单细胞分辨率的数据,有助于探索细胞异质性,并揭示组织特异性的细胞-细胞通信热点。Open ST在人类原发组织中的应用为免疫、基质和肿瘤群体的空间组织打开了一个新的视角。在头颈部鳞状细胞癌(HNSCC)中,该技术描绘了这些细胞的空间异质性,突出了原发性肿瘤及其转移之间的差异。Open ST揭示空间受限异质性的能力为细胞群体在原发性和转移性环境中如何不同地相互作用提供了一个精细的视角。通过准确地在3D肿瘤/淋巴结界面识别潜在的生物标志物,该研究提示了可以为个性化药物策略提供信息的治疗靶点和疾病机制。

    通过与基于成像的空间转录组学技术进行严格的基准测试,Open ST成为一种可靠而强大的工具,能够以显著的准确性复制已知的细胞类型和基因表达模式。Open ST对3D虚拟组织块的探索不仅确定了细胞类型和基因程序,还阐明了受体-配体在其固有空间环境中的相互作用,加深了我们对细胞通讯动力学的理解。

    总之,Open ST代表了空间转录组学的飞跃,提供了一个全面的开源解决方案,在三个维度上结合了易用性、可负担性、高分辨率和可扩展性。Open ST的应用范围从基础研究到临床研究,有望阐明组织生物学和疾病进展背后的复杂分子机制。随着该领域的不断发展,Open ST将成为推动免疫学及其他领域未来发现和进步的基石技术。

相关报告
  • 《Nature | 小鼠全脑高分辨率单细胞空间转录组图谱》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-10-01
    • 2023年9月27日,MIT化学系、Broad 研究所的王潇研究组在Nature上发表了题为Spatial atlas of the mouse central nervous system at molecular resolution的文章。研究人员采用原位测序技术STARmap PLUS,以194 X 194 X 345 nm3体素尺寸在亚细胞分辨率水平上对成年小鼠全脑和脊髓中17个冠状切面和3个矢状切面组织切片中的1,022个基因进行了检测,使用细胞分割算法ClusterMap得到了109万个高质量空间分辨单细胞基因表达。通过大规模的单细胞分析注释,用空间基因表达定义了更精细的组织区域。 这项工作为理解小鼠中枢神经系统提供了一个大规模的分子空间图谱,囊括了超过一百万个细胞,以及他们的基因表达特征、空间坐标、分子细胞类型、分子组织区域类型,以及遗传操作可及性。这项工作为建立分子空间图谱提供了实验和计算的框架,涵盖了从单个RNA分子到单细胞再到器官组织区域的跨越多个空间尺度的分析,为神经科学研究提供了重要的数据和工具。作者们已将这套图谱开放共享(http://brain.spatial-atlas.net/),供研究者探索。 本文内容转载自“BioArt”微信公众号。 原文链接: https://mp.weixin.qq.com/s/u5Q6AL3JL83XDEiLJjKKuQ
  • 《生物物理所等首次解析2型单纯疱疹病毒核衣壳高分辨率结构》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-02
    • 近日,中国科学院院士饶子和团队研究员王祥喜、湖南师范大学教授刘红荣、中国科学院生物物理研究所研究员章新政、中国食品与药品检定研究院教授王军志等合作,首次解析了疱疹病毒α家族的2型单纯疱疹病毒(HSV-2)核衣壳的3.1Å原子分辨率结构,阐明了核衣壳蛋白复杂的相互作用方式和精细的结构信息,并提出了疱疹病毒核衣壳的组装机制,为进一步研究病毒核衣壳与包膜蛋白的组装以及疱疹病毒的抗病毒治疗奠定了基础。相关研究成果以 Cryo-EM structure of a Herpesvirus capsid at 3.1Å 为题,于4月6日发表在《科学》(Science)上。   疱疹病毒是在世界范围内广泛传播的一大类病毒,包含病毒种类众多,能够感染人类在内的多种哺乳动物。疱疹病毒在感染人体后可引发口腔和生殖器疱疹、水痘、带状疱疹等多种疾病,甚至引起多种免疫系统疾病、脑炎以及癌症等发生。疱疹病毒在世界范围内广泛传播,以单纯疱疹病毒为例:世界卫生组织2017年1月数据显示,全球约有42亿50岁以下的人(约80%)感染单纯疱疹病毒(HSV-1和HSV-2)。疱疹病毒有着独特的潜伏-再活化机制,可关闭其大部分活动状态的基因,只在特定的潜伏阶段打开特定的少数基因,并在合适的条件下恢复活性,重新进入增殖过程。这种潜伏-再活化机制使由疱疹病毒感染产生的疾病难以完全治愈,患者通常将终生携带病毒。   疱疹病毒直径约为200nm,包含表面囊膜、蛋白质中间层(tegument proteins)、核衣壳颗粒和DNA核心四层结构。其中,核衣壳的直径约为125nm,在病毒的复制、组装、成熟以及侵染过程中都起到非常重要的作用。核衣壳包含A、B、C三类,三类核衣壳均为非标准正二十面体。A型核衣壳内部为空,不包含其他蛋白和病毒基因组;B型核衣壳内部包含支架蛋白;C型核衣壳内部包含病毒基因组,并可以逐渐成熟,成为具有侵染增殖活性的成熟病毒。过去20年,许多科学家试图用冷冻电镜技术解析疱疹病毒核衣壳的三维结构,然而由颗粒尺寸太大而导致的冰层过厚、信噪比降低和埃瓦尔德球效应,为高分辨信息的重构带来技术瓶颈。   该研究以HSV-2衣壳颗粒为研究对象,利用最新开发的冷冻电镜单颗粒重构的计算方法“分区计算法”和“欠焦值修正法”,解析了3.1Å的核衣壳B颗粒,并搭建了结构模型,详细分析了核衣壳中各结构蛋白的构象变化与蛋白之间的相互作用关系,阐释了病毒核衣壳早期组装的机制,为后续研究核衣壳在神经细胞的运输提供了扎实的结构基础。针对“大尺度颗粒”的重构方法的应用,使得冷冻电镜结构解析的应用范围进一步推广,巨型病毒颗粒或亚细胞系级的超大蛋白质复合物的单颗粒重构可以实现近原子分辨率,将进一步推动结构生物学的进步与发展。鉴于核衣壳结构在疱疹病毒中的重要性和保守性,针对疱疹病毒核衣壳结构的药物设计与分子筛选,该研究所解析的核衣壳结构能够为广谱性药物的研制提供结构基础。   饶子和团队博士研究生袁帅、王佳灵,章新政课题组博士研究生朱东杰为论文共同第一作者。王祥喜、章新政、刘洪荣、王军志、饶子和为论文共同通讯作者。生物物理所研究生王男、博士高强,湖南师范大学研究生陈文沅、唐豪参与了该研究部分工作。该研究得到了国家自然科学基金、国家重点基础研究发展计划、中国科学院战略性先导科技专项等的资助。