《杂结构的SnS2/SnO2纳米管,具有更强的电荷分离能力和优异的光催化制氢性能》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2018-07-02
  • SnO2是一种很有前途的光催化裂解剂,由于光利用不足和电荷载体的电子空穴快速重组,其活性较差。在此基础上,设计了SnO2/SnS2纳米管的一维异质结构,并用硫化方法进行了简单的电纺。独特的异质结构SnO2/SnS2可以通过唯一耦合的SnO2/SnS2异构接口同时促进光载波传输和抑制电荷重组。此外,优化的type-II异质结构还可以提高光吸收,减弱光电荷转移的障碍。结果,SnO2进化/ H2 SnS2表现出优异的光催化性能模拟光辐照下50μmol H2产量高的h−1不使用任何贵金属co-catalyst,这是4.2倍,纯粹的SnO2相同条件下。

    ——文章发布于2018年6月19日

相关报告
  • 《碳纳米管和TiO2纳米复合材料的光催化制氢》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-06-12
    • 采用声化学/水合物脱水技术合成了含TiO2的单壁碳纳米管(SWNTs)和多壁碳纳米管(MWNTs)的二元复合材料CNT/TiO2。制备了不同比例的CNT/TiO2(0.25、0.5和1%)。采用粉末x射线衍射(XRD)、拉曼光谱(Raman)和紫外-可见漫反射光谱(UV-vis)对形态学和物理化学性质进行了研究。研究发现,与MWNTs相比,TiO2纳米颗粒与SWNTs更均匀。7.5%甲醇溶液作为牺牲剂用于生成氢气和65毫克的合成二元复合材料在光强度40 mW厘米−2。结果表明,与MWNTs相比,SWNTs增加了TiO2的活性。SWNTs比值越低,TiO2的产氢活性越高,而MWNTs比值越高,TiO2的产氢活性越高。
  • 《SnS2量子点修饰的MoS2实现碱性介质环境高效裂解水产氢》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-09-18
    • 二硫化钼(MoS2)是非常有前景的非贵金属电催化剂,广泛用于酸性介质中的催化析氢反应(HER),但其缓慢的水解离过程导致在碱性条件下的HER反应非常缓慢,使该类催化剂的应用受到了一定限制,因此改善上述催化剂在碱性介质环境中水分子的吸附和解离能力成为该领域的研究热点。 澳大利亚伍伦贡大学Wenping Sun教授课题组采用湿化学法设计制备了二硫化锡(SnS2)纳米量子点修饰的MoS2/ SnS2异质结催化剂,显著增强了催化剂对水分子的吸附和解离能力,从而增强了其催化裂解产氢性能。研究人员采用两步水热反应分别制备了MoSe2纳米片,随后通过原位超声沉淀方法将SnS2纳米量子点吸附到MoSe2表面。透射电镜表征显示,SnS2量子点均匀地分散在MoSe2纳米片表面,平均尺寸3-5 nm;且呈现出了MoS2和SnS2两套特征晶格条纹,表明形成了MoS2/ SnS2异质结。X射线电子谱(XPS)显示制备的样品含有Mo、Se、Sn和S元素,进一步证实了样品的MoS2/ SnS2异质结;此外XPS测试结果还发现形成异质结后Mo3d和Se3d束缚能分别向低能带偏移了0.2和0.3eV,而Sn3d峰正向偏移了0.5 eV,表明电子从SnS2转移到了MoSe2。这种在界面处电荷的再分布有利于增加水分子的吸附,并提高MoSe2的导电性。接着研究人员分别将MoS2和MoS2/SnS2置于1摩尔的氢氧化钾(KOH)电解液中进行电化学性能测试,在10mA/cm2电流密度下,没有SnS2量子点修饰的MoSe2的过电位为367 mV,塔菲尔斜率为147 mV/dec,质量比活性为147 mA/mg,而有SnS2量子点修饰的MoS2/SnS2异质结催化剂过电位降至285 mV,塔菲尔斜率降至109 mV/dec,质量比活性大幅提升至559 mA/mg,表明SnS2量子点修饰显著增强了催化剂的反应动力学和催化活性。为了探究其催化性能增强的内在机理,研究人员利用密度泛函理论(DFT)计算水分子在MoS2、SnS2和MoS2/SnS2的基面和边缘位点的吸附强度,结果表明SnS2的引入增强了MoS2对水分子的吸附能力并加速了水的解离;另外,SnS2的基面和边缘位置也有利于水分子的吸附,从而进一步提高了MoS2/SnS2对水分子的吸附和解离动力学速率,进而增强了催化性能。 该项研究设计制备了全新的非金属MoS2/SnS2异质结催化剂,引入SnS2增强了MoS2对水分子的吸附和解离能力,进而增强了催化活性,为设计开发高效碱性裂解水产氢的非金属催化剂提供了新思路。相关研究工作发表在《Nano Energy》 。