《细胞表面CD4分子干扰了T细胞释放的HIV-1病毒粒子的传染性》

  • 来源专题:艾滋病防治
  • 编译者: 李越
  • 发布时间:2005-04-15
  • The CD4 protein is required for the entry of human immunodeficiency virus (HIV) into target cells. Upon expression of the viral genome, three HIV-1 gene products participate in the removal of the primary viral receptor from the cell surface. To investigate the role of surface-CD4 in HIV replication, we have created a set of Jurkat cell lines which constitutively express surface levels of CD4 comparable to those found in peripheral blood lymphocytes and monocytes. Expression of low levels of CD4 on the surface of producer cells exerted an inhibitory effect on the infectivity of HIV-1 particles, whereas no differences in the amount of cell-free p24 antigen were observed. Higher levels of cell surface CD4 exerted a stronger inhibitory effect on infectivity, and also affected the release of free virus in experiments where the viral genomes were delivered by electrotransfection. The CD4-mediated inhibition of HIV-1 infectivity was not observed in experiments where the vesicular stomatitis virus G protein was used to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. In contrast, inhibition of particle release by high levels of cell-surface CD4 was not overcome by pseudotyping HIV-1 with foreign envelope proteins. Protein analysis of viral particles released from HIV-infected Jurkat-T cells revealed a CD4-dependent reduction in the incorporation of gp120. These results demonstrate that physiological levels of cell-surface CD4 interfere with HIV-1 replication in T cells by a mechanism that inhibits envelope incorporation into viral membranes, and therefore provide an explanation for the need to down-modulate the viral receptor in infected cells. Our findings have important implications for the spread of HIV in vivo and suggest that the CD4 down-modulation function may be an alternative target for therapeutic intervention.
  • 原文来源:http://www.jbc.org/cgi/content/full/277/3/1770?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=HIV&andorexactfulltext=and&searchid=1113532022149_11328&stored_search=&FIRSTINDEX=30&sortspec=relevance&resourcetype=1
相关报告
  • 《人体粘膜肥大细胞能够捕获HIV-1病毒并调节CD4+T细胞的转染》

    • 来源专题:艾滋病防治
    • 编译者:门佩璇
    • 发布时间:2016-01-14
    • 胃肠粘膜是HIV-1病毒入侵和增殖的主要位点,HIV-1在细胞间的传播是病毒粘膜传播中至关重要的环节。肥大细胞主要分布于机体与外界环境接触的部位,如皮肤、胃肠道和生殖道粘膜等,是病毒早期入侵机体的主要靶点。近年来,肥大细胞在抵御细菌、病毒、寄生虫等病原体入侵方面发挥的重要作用日益受到广泛关注。有研究表明,肥大细胞在HIV感染女性的生殖器粘膜上密度显著增加。肠道肥大细胞表达有多种病原体相关分子模式(PAMPs),可对抗各种病毒、寄生虫和细菌感染。然而,肥大细胞在HIV-1感染中的作用及机制尚不清楚。 日前,来自中国科学院上海巴斯德研究所王建华课题组的研究者联合中国南京医科大学附属江苏省人民医院、上海市第六人民医院、上海市公共卫生临床中心,和美国美国Tulane灵长类研究中心等单位,共同开展研究,揭示了HIV-1黏膜感染(性传播)的新机制。研究结果已于近日在线发表于国际学术期刊《Journal of Virology》上。 研究从结肠癌旁组织黏膜中分离肥大细胞,发现其表达着多种HIV-1受体或辅佐受体,可被HIV-1直接感染;更为重要的是,肥大细胞还能表达C-型凝集素分子DC-SIGN、整合素α4β7及硫酸肝素等,作为HAF(HIV attachment factor)结合HIV-1,将捕捉到的感染性病毒颗粒传播给CD4+T细胞,从而扩大HIV-1病毒感染。 该研究结果揭示了肠道粘膜肥大细胞在HIV-1传播中的潜在作用和分子机制,为制定相应的HIV-1黏膜感染阻断策略具有重要意义。该研究得到了中国科学院、国家基金委及科技部艾滋病和病毒性肝炎重大传染病防治专项的资助。
  • 《表达糖磷脂锚定的CD4分子的HeLa细胞HIV的感染和合胞体的形成》

    • 来源专题:艾滋病防治
    • 编译者:李越
    • 发布时间:2005-04-16
    • The CD4 molecule, a glycoprotein expressed primarily on the cell surface of specific T lymphocytes, is thought to function in T-cell antigen recognition and activation. In addition, CD4 serves as a receptor for human immunodeficiency virus type 1 (HIV-1) by a direct interaction with the HIV-1 surface glycoprotein (gp120). To further characterize the HIV-1-cell interaction, a HeLa cell line was established that expressed a chimeric molecule of CD4 and decay-accelerating factor (DAF). In the chimeric CD4-DAF molecule the transmembrane and cytoplasmic domains of CD4 were deleted and replaced with the carboxy-terminal 37 amino acids of DAF. This resulted in the anchoring of the extracellular domain of CD4 to the cell membrane via a glycophospholipid linkage. The glycophospholipid-anchored CD4 had a molecular size of approximately 56 to 62 kDa and was released following treatment of the cells with phosphatidylinositol-specific phospholipase C. HeLa cells expressing the CD4-DAF hybrid could be infected with HIV-1, as evidenced by reverse transcriptase activity, p24 core antigen content, and infectious virus production. In addition, transfection of the HeLa CD4-DAF cells with a plasmid that directs the synthesis of HIV-1 envelope glycoproteins or cocultivation with HeLa cells expressing the virus glycoproteins resulted in syncytium formation. These results indicate that the transmembrane and cytoplasmic domains of the CD4 molecule are dispensable for both HIV infection and syncytium formation.