《IBM-Science:造出世界上最小的碳纳米管晶体管》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-07-25
  • 2017年6月30日,Science发表IBM研究人员的文章,宣布制造出整体尺寸约为40nm的碳纳米管晶体管。目前主流的14nm节点硅基晶体管,其实际整体尺寸在90-100nm左右。这种碳纳米管晶体管不仅整体尺寸比硅基晶体管小一半,而且表现出相当高的归一化电流密度,在0.5V的低供给电压,亚阈值摆幅85 mV/dec下,电流密度高于0.9 mA/μm。此外,在超负荷运算工作下,新型晶体管较硅器件能传输更高的电流。

    碳纳米管一直被研究者视为延续摩尔定律的潜在替代材料。但是,使用碳纳米管来替代传统硅基晶体管最大的难度在于,如果要达到理想的性能,碳纳米管截面直径要达到100nm左右,这比目前的硅晶体管要大得多。为了减少这个数字,IBM的研究团队使用钼制作触点,使其直接与纳米管的端部结合,从而减小了所需碳纳米管的体积。研究人员还添加了钴,以便可以在较低的温度下将合金与碳纳米管进行结合,从而缩小触点之间的间隙。并且,为了提高晶体管的传输电流,研究人员还将多根碳纳米管平行放置形成阵列。

    目前最新的硅基晶体管技术已达到5nm节点,该节点下晶体管栅长约为20nm,在此基础上已经很难再取得突破。而碳纳米管直径约为0.4-2nm,这使其能够将晶体管栅长降低到10nm,且不会造成短沟道效应给器件性能带来的不利影响。并且同等尺寸下碳纳米管晶体管具有比硅晶体管更高的性能。不过,作为一项新技术,高性能纳米管逻辑晶体管距离商业化,还有一些工艺方面的问题如器件稳定性、一致性等需要解决。

相关报告
  • 《碳纳米管“变身”超微型晶体管》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-28
    • 来自中国、日本、俄罗斯和澳大利亚的科学家组成的国际研究小组在最新一期《科学》杂志撰文指出,他们历时5年,使用一种插入电子显微镜的独特工具,制造出了一种超微型晶体管,其宽度仅为人类头发丝宽度的1/25000。   在这项新研究中,科学家们首先朝一个碳纳米管同时施加力和低电压,加热它直到外层管壳分离,留下单层纳米管,从而制造出这种微型晶体管。研究人员解释称,热量和应变改变了纳米管的“手性”,这意味着结合在一起形成纳米管壁单原子层的碳原子被重新排列,结果让碳纳米管“变身”为晶体管。   用于开关和放大电子信号的晶体管是包括计算机在内的所有电子设备的基础元件。苹果公司表示,为未来苹果手机供电的芯片包含150亿个晶体管。几十年来,计算机行业一直致力于开发越来越小的晶体管,但将晶体管小型化到纳米级是现代半导体工业和纳米技术领域面临的一大挑战。   研究人员表示,他们或许可以借助碳纳米管制造出节能的纳米晶体管,以超越由硅制成的微处理器,但控制单个碳纳米管的“手性”(决定了碳原子的几何结构和电子结构)仍然是一个巨大的挑战。在最新研究中,他们通过加热和机械应变改变了金属纳米管片段的局部“手性”,设计并制造了碳纳米管分子内晶体管。   最新研究负责人、昆士兰大学材料科学中心联合主任德米特里·戈尔伯格教授说:“我们证明,我们拥有操纵纳米管分子特性来制造纳米级电子器件的能力,为下一代先进计算设备所用微型晶体管的研制开辟了新途径。”   研究人员强调称,尽管最新方法不适用于微型晶体管的大规模生产,但展示了一种新的制造原理,并开辟了利用纳米管的热机械处理方法获得具有所需特性的最小晶体管的新视野。
  • 《石墨烯国外行业动态:富士通制出全球热导最好的碳纳米管板/不会开裂的石墨烯基晶体管问世/石墨烯纳米发电机实现高效无线传输》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-12-13
    • 1.最锋利的石墨烯纳米“镊子”成功制备,可高效捕获生物分子 明尼苏达大学科学与工程学院的研究人员用石墨烯材料制成了微小的电子“镊子”,它能以极高的效率抓住漂浮在水中的生物分子,比以往所有技术都有效,它的出现可能会给手持式疾病诊断系统带来革命性发展。 “镊子”其实是一种探针,通过介电电泳进行分子捕获。石墨烯片厚度薄,它的边缘是最锐利的探针,可解决以往金属电极太钝的问题。所以研究人员将薄的二氧化铪绝缘材料夹在金属电极和石墨烯之间,创建夹层结构的石墨烯镊子。这种原子镊子可以用来捕获、感知和释放生物分子,对于医疗诊断来说具有巨大的潜力。 2.世界上热导性最好的碳纳米管板问世 富士通实验室成功研制出具有世界顶级散热能力的高热导率碳纳米管板这种板材由垂直定向的纯碳纳米管组成,具有优秀的热导率和耐热性。 实验室研究人员通过精确控制操作温度和压力,使碳纳米管在垂直方向进行密集均匀的排列生长,并在2000摄氏度以上的温度下进行热处理的板成型,利用这些技术制造出的散热片的散热性能是目前使用铟材料的三倍,具有世界上最好的散热性能。 3.新型石墨烯异质结制作方法 异质结是构成微电子器件的基本构件,在硅的基础上已经发展到极限。现在,研究人员研发出一种新的异质结合成方法,并用纳米带石墨烯条带成功制得微纳米尺度精确性极佳的异质结,实现了原子级别的控制合成。 异质结的形成依赖于两种不同分子的前聚体,分子的前聚体会产生两个相应的纳米带,这些纳米带会与衬底表面的随机点连接在一起。研究人员结合石墨烯生长自下而上的特点,开发了一种可以对前聚体完全控制的方法来得到精确结构的异质结。但是合成过程需要超高真空和高温条件以及金质基底,所以这种方法暂时只在实验室阶段。 4.石墨烯复合材料新发现——可实现无线传输能量和信号 最新美国Clemson大学的研究人员研发出摩擦纳米发电机,这种电机不仅可利用环境中的废弃机械能,还可以无线传输能量和信号。这种由新型石墨烯和聚乳酸制成的无线电力传输设备是第一台可以无线传输的可再生能源发电机,可为未来物联网夯实基础。 研究人员利用基本的晶体对称性原理,设计出这种石墨烯纳米复合材料。他们深知材料的摩擦或压电性质由材料的晶体学对称性决定,所以采用聚乳酸这种含有两个不对称碳原子的材料复合石墨烯制成具有不对称性的聚合物复合材料,并将它嵌入到可以提供的电压且能够将无线传输到远程设备的发电机中。最终得到能轻易产生2400V的电场,并可传输3米以上的二进制代码的传送能力,这种设备的产生将会促进物联网发展进程加快。 5.电子产业的福音:我国研发出碳纳米管手性可控合成技术 东北大学的Toshiaki Kato教授团队近期找到控制单壁碳管手性的制备方法,解决了领域内困扰科学家25年的大难题。 单壁碳纳米管有数百种,但只有少数可以选择性地合成。通过与东京大学合作,Toshiaki Kato教授团队改进方法,通过调节等离子体进行化学沉积,控制Co催化剂的氧化程度改变催化剂间的结合能,使生长具有选择性,最终得到了手性的单壁碳纳米管。莱斯大学的教授肯定了这项工作的实用性,并认为这将对电子产业可能带来极大的突破。 6.具有弹性的石墨烯基晶体管问世,解决应用难题 石墨烯电子器件的应用缺点是容易产生裂纹,但最近斯坦福大学的研究人员找到了克服这个缺点的办法,并创造出迄今为止最具弹性的碳基晶体管。 这个研究团队的创新点在创造了石墨烯纳米卷,它们是在石墨烯从一个基板移动到另一个基板的湿转移过程中自然形成的。研究人员将这些石墨烯纳米卷堆叠在石墨烯层之间,形成一种新式组合,使石墨烯导电的优异性能可充分发挥。并且这种组合使晶体管具有高度透明性和可拉伸性,因此在高应力作用下,即使石墨烯薄片出现裂缝,石墨烯卷仍能继续提供导电的路径。相较于其他导体,这种碳基晶体管表现出强大的优势。