《武汉病毒所/生物安全大科学中心在迷你铁蛋白用于抗氧化治疗方面取得重要进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2021-03-03
  • 活性氧(Reactive Oxygen Species,ROS)是生物有氧代谢或外源性刺激产生的含氧的化学反应性物质,包括超氧根离子(O2·-)、羟基自由基(HO·)、单线态氧(1O2)、过氧化氢(H2O2)等。生理条件下,ROS的生成和代谢被严格调控,在细胞信号转导和体内平衡等方面具有重要作用;而ROS一旦过量则会引起生物大分子的损伤,导致细胞和器官的功能障碍,促进炎症、衰老相关疾病的发生发展。不同的ROS可以通过化学反应进行转换,如H2O2与Fe2+等过渡金属离子发生Fenton反应产生HO·。HO·不仅没有必要的生物学功能,破坏性也最强,故减少HO·的产生是抗氧化的重要切入点。已有的抗氧化材料(包括小分子化合物、纳米材料等)往往通过降低两种前体物质H2O2和金属离子中的一种来抑制HO·的产生。然而,有研究指出这些抗氧化材料会破坏体内ROS或金属离子的内稳态,引起副作用甚至死亡。

           来源于李斯特菌的迷你铁蛋白(DNA-binding protein from starved cells, Dps)是铁蛋白超家族的一员,具有由12个亚基自组装形成的纳米笼型结构。Dps拥有特异性结合游离Fe2+的铁氧化酶活性中心,能高效利用H2O2将Fe2+快速氧化成Fe3+并储存于其内腔。因此,Dps是一种能抑制Fenton反应和HO·生成的天然纳米材料。

           中国科学院武汉病毒研究所/生物安全大科学研究中心李峰研究员课题组通过对Dps纳米笼进行表面改造,在Dps亚基N端引入适量组氨酸,赋予其细胞穿膜功能,在人源皮肤成纤维细胞上证实了改造的Dps主要利用网格蛋白介导的内吞途径进入细胞,通过抑制Fenton反应发挥高效的抗氧化作用,并在小鼠皮炎模型上证实了Dps活体水平的抗氧化治疗效果。Dps的抗氧化作用需同时消耗H2O2和Fe2+,原理上有助于克服ROS和金属离子内稳态失衡问题。此外,它还具有天然的生物相容性、生物可降解性、良好的酸稳定性、易于制备和工程化改造等优点。Dps作为一个独特的生物纳米医药平台,在抗衰老、抗炎、抗病毒感染、化妆品开发等方面具有广阔的应用前景。目前,他们正在开展进一步的应用探索。

           相关研究成果于2月15日在线发表于Nanoscale。武汉病毒所朱伟伟和方倜为论文的共同第一作者,李峰研究员为通讯作者。该研究得到了国家自然科学基金和中国科学院应急专项等项目的支持。

  • 原文来源:http://www.whiov.cas.cn/kxyj_160249/kyjz_160280/202102/t20210223_5959064.html;https://pubs.rsc.org/en/Content/ArticleLanding/2021/NR/D0NR08878A#!divAbstract
相关报告
  • 《武汉病毒所/生物安全大科学中心在杆状病毒二硫键形成通路 研究中取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-12-12
    • 2022年12月5日,国际学术期刊Journal of Virology在线发表了中国科学院武汉病毒研究所胡志红、王曼丽团队的最新研究成果,论文题为“AC81 is a putative disulfide isomerase involved in baculoviral disulfide bond formation” (AC81作为潜在的二硫键异构酶参与杆状病毒二硫键的形成)。       二硫键的正确形成对蛋白质的结构和功能十分重要。细胞生物的二硫键形成一般由二硫键氧化形成和二硫键异构化两部分组成,即未折叠肽链经过氧化通路形成二硫键,其中错误形成的二硫键会经异构化重排,最终形成天然构象。一些大DNA病毒如痘病毒、非洲猪瘟病毒、杆状病毒等,需要依赖于病毒自身编码的二硫键形成通路完成其复制周期。目前尚揭示病毒编码的二硫键异构酶。       该团队前期鉴定了杆状病毒二硫键氧化形成通路中巯基氧化酶P33的首个底物蛋白PIF5,提出了杆状病毒二硫键形成通路的模式图。在此项研究中,利用结构预测分析,发现AC81蛋白具有二硫键异构酶的结构特征。利用非还原Western blot实验,发现ac81缺失时,PIF5的二硫键依然形成但构象异常,提示AC81可能作为二硫键异构酶发挥功能。通过构建一系列重组病毒,揭示了ac81的缺失或其关键位点的突变会对感染性BV的产生、ODV的装配及包埋、底物PIF5的正常构象等多方面产生明显影响。以上研究揭示了杆状病毒二硫键形成通路潜在的二硫键异构酶,并更新了杆状病毒二硫键形成通路的模式图(图1)。此前,ac81是感染节肢动物的核内大DNA病毒中保守存在的13个基因中唯一功能不清楚的基因,该研究揭示了AC81的功能,并提示由AC81和P33介导的二硫键形成通路是这类病毒中保守存在的古老机制。       该研究得到了国家自然科学基金(32200126和31570153)、中国科学院前沿科学重点研究项目(QYZDJ-SSW-SMC021)等项目的支持。武汉病毒所张环宇博士后为该论文第一作者,王曼丽研究员和胡志红研究员为共同通讯作者。 论文链接:https://doi.org/10.1128/jvi.01167-22
  • 《武汉病毒所/生物安全大科学中心张波团队在新冠病毒小鼠感染模型方面取得新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-10
    • 近日,中国科学院武汉病毒研究所/生物安全大科学研究中心张波课题组建立了一种以甲病毒为载体的、快速高效的新型冠状病毒(SARS-CoV-2)小鼠感染模型,相关成果在线发表于国际学术期刊Cell Research (《细胞研究》)。论文题目为 “A mouse model for SARS-CoV-2 infection by exogenous delivery of hACE2 using alphavirus replicon particles”(一种由甲病毒载体递送hACE2基因的新型冠状病毒感染小鼠模型)。 SARS-CoV-2感染受体为人血管紧张素转化酶(hACE2),由于与hACE2存在关键氨基酸位点差异,小鼠ACE2(mACE2)不能介导病毒入侵,因此SARS-CoV-2不能感染普通小鼠模型。在小鼠中表达hACE2是建立SARS-CoV-2感染模型的主要方法之一。甲病毒载体具有外源基因表达效率高、安全性好、宿主范围广的特点,被广泛用于疫苗、基因治疗和细胞转导等领域。 该研究以甲病毒属成员委内瑞拉马脑炎病毒(VEEV)复制子颗粒系统为载体表达hACE2受体(VEEV-VRP-hACE2)(图1 a,b)。研究首先证实了VEEV-VRP-hACE2能够使对SARS-CoV-2不易感的BHK-21和小鼠肺上皮细胞MLE-12转变为SARS-CoV-2易感细胞,在细胞水平上验证了该系统的可行性。随后小鼠体内实验结果表明提前1天对BALB/c或C57BL/6鼻腔感染VEEV-VRP-hACE2,再感染SARS-CoV-2,能够在小鼠肺部检测到病毒复制和扩增,且病毒载量连续5天保持较高水平(图1 c,d,h),小鼠肺部有明显的肺炎病症表现(图1 i),以上结果表明,VEEV-VRP-hACE2可将hACE2基因递送至小鼠呼吸道,建立一种新冠病毒小鼠感染模型。 随后,该研究团队利用此小鼠模型评价了新冠病毒的中和抗体及灭活病毒疫苗对病毒感染的治疗作用。结果显示注射中和抗体及免疫灭活病毒疫苗的小鼠攻毒后肺部病毒载量显著降低(图1 j,k),且病理损伤减轻,说明该模型能够很好地应用于中和抗体和疫苗的评价中。 该感染模型能够在普通的BALB/c或C57BL/6小鼠上快速建模,构建周期短,不需要繁殖,可实现短期内大规模推广。该模型的建立有望缓解新冠病毒研究中动物模型紧张的问题。 武汉病毒所博士生张亚南、博士后李晓丹、博士生张哲瑞为论文共同第一作者,武汉病毒所张波研究员与叶寒青副研究员为共同通讯作者。该研究得到了国家重点研发计划和国家自然科学基金的支持。