《Chameleon materials: The origin of color variation in low-dimensional perovskites》

  • 来源专题:后摩尔
  • 编译者: shenxiang
  • 发布时间:2020-05-14
  • Some light-emitting diodes (LEDs) created from perovskite, a class of optoelectronic materials, emit light over a broad wavelength range. Scientists from the University of Groningen have now shown that in some cases, the explanation of why this happens is incorrect. Their new explanation should help scientists to design perovskite LEDs capable of broad-range light emission. The study was published in the journal Nature Communications on 11 May.

    Low-dimensional (2D or 1D) perovskites emit light in a narrow spectral range and are therefore used to make light-emitting diodes of superior colour purity. However, in some cases, a broad emission spectrum at energy levels below the narrow spectrum has been noted. This process has attracted great interest as it could be used to produce white light LEDs more easily compared to the processes that are currently being used. To design perovskites for specific purposes, however, it is necessary to understand why some perovskites produce broad-spectrum emissions while others emit a narrow spectrum

    论文信息:Simon Kahmann, Eelco K. Tekelenburg, Herman Duim, Machteld E. Kamminga and Maria A. Loi: Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskites. Nature Communications, 11 May 2020

相关报告
  • 《Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Quantization Conductance of InSb Quantum-Well... Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures Article Preview Abstract: Electron transport behaviour in InSb semiconductor significantly changes when the conduction is restricted to two-dimensions. Semiconductor materials are an effective tools to characterize the electron transport in this aspect because the energy separation between transverse modes in a low-dimensional semiconductor device are always inversely proportional to the effective mass, in the same way as for sub-bands in a parabolic potential. Therefore, in this article, a range of novel device geometries were designed, fabricated and characterized to investigate ballistic transport of electrons in low-dimensional InSb structures using surface gated devices to restrict the degrees of freedom (dimensionality) of the active conducting channel. In this framework, designs of gates (i.e., line, loop and solid discussed later) have been used over a range of gate dimensions. Consistent measurement of quantised conductance would be promising for both low power electronics and low temperature transport physics where split gates are typically used for charge sensing. This article presents an experimental results of quantization conductance obtained for the range geometries of novel gates, and some model consideration of the implications of the material choice. Furthermore, the etching techniques (wet and dry) exhibited a significant decrease of ohmic contact resistance from around 35kΩ to only roughly 250Ω at room temperature. Interestingly a possible 0.7 anomaly conduction was observed with a loop gate structure. This work showed perfectly that the two-dimensional electron gases can be formed in narrow gap InSb QWs which makes this configuration device promising candidate for topological quantum computing and next generation integrated circuit applications. Keywords: Quantization conductance, InSb QW, 2DEG, spilt gate structure, ballistic transport. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 49-63 DOI: https://doi.org/10.4028/p-PLC4fu Citation: Cite this paper Online since: July 2024 Authors: Shawkat Ismael Jubair, Asheraf Eldieb, Ghassan Salem, Ivan Bahnam Karomi, Phil Buckle Keywords: 2 Dimensional Electron Gas (2DEG), Ballistic Transport, InSb Qw, Quantization Conductance, Spilt Gate Structure Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] K. Delfanazari, J. Li, Y. Xiong, P. Ma, R. K. Puddy, T. Yi, I. Farrer , S. Komori, J. W.A. Robinson, L. Serra, D.A. Ritchie, M. J. Kelly, H. J. Joyce , and C. G. Smith, Quantized conductance in hybrid split-gate arrays of superconducting quantum point contacts with semiconducting two-dimensional electron systems, Phys. Rev. Appl. 21 1 (2024) 1. DOI: 10.1103/physrevapplied.21.014051 Google Scholar [2] J. Yan, Y. Wu, S. Yuan, X. Liu, L. N. Pfeiffer, K. W. West, Y. Liu, H. Fu, X. C. Xie, and X. Lin, Anomalous quantized plateaus in two-dimensional electron gas with gate confinement, Nat. Commun. 14. 1 (2023). DOI: 10.1038/s41467-023-37495-9 Google Scholar [3] Z. Lei , E. Cheah, K. Rubi , M. E. Bal, C. Adam, R. Schott , U. Zeitler, W. Wegscheider, T. Ihn, and K. Ensslin., High-quality two-dimensional electron gas in undoped InSb quantum wells, Phys. Rev. Res. 4, 1 (2022) 1–9. DOI: 10.1103/physrevresearch.4.013039 Google Scholar [4] S. Heedt, M. Quintero-Pérez, F. Borsoi, A. Fursina, N. v. Loo, G. P. Mazur, M. P. Nowak, M. Ammerlaan, K. Li, S. Korneychuk, J. Shen, M. A. Y. van de Poll, G. Badawy, S. Gazibegovic, N. de Jong, P. Aseev, K. v. Hoogdalem, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices, Nat. Commun. 12, 1 (2021) 1–9. DOI: 10.1038/s41467-021-25100-w Google Scholar [5] E.J. Koop, A. I. Lerescu, J. Liu, B. J. van Wees, D. Reuter, A. D. Wieck, C.H. van der Wal, The influence of device geometry on many-body effects in quantum point contacts: Signatures of the 0.7 anomaly, exchange and Kondo, J. Supercond. Nov. Magn., 20, 6 (2007) 433–441. DOI: 10.1007/s10948-007-0289-5 Google Scholar [6] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. C Solid State Phys., 21, 8 (1988) L209–L214. DOI: 10.1088/0022-3719/21/8/002 Google Scholar [7] A. David and B. Miller, Optical physics of quantum wells. 2020. Google Scholar [8] U. I. Erkaboev, R. G. Rakhimov, J. I. Mirzaev, U. M. Negmatov, and N. A. Sayidov, Influence of a magnetic field and temperature on the oscillations of the combined density of states in two-dimensional semiconductor materials, Indian J. Phys., 98, 1 (2024) 189–197. DOI: 10.1007/s12648-023-02803-y Google Scholar [9] D. K. Ferry, S. M. Goodnick, and Jonathan Bird, Transport in Nanostructures, second Edi. Cambridge University Press, 2009. Google Scholar [10] Y.V Nazarov and Y.M. Blanter, Quantum Transport. Introduction to Nanoscience. Cambridge University Press, 2009. Google Scholar [11] C.W.J. Beenakker and H. van Houten, Quantum Transport in Semiconductor Nanostructures, Solid State Phys. - Adv. Res. Appl., 44, C (1991) 1–111. DOI: 10.1016/s0081-1947(08)60091-0 Google Scholar [12] G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa, M. Kozicki, S. Majumdar, M. Menghini, E. Miranda, C. Ricciardi, S. Tappertzhofen, K. Terabe, and I. Valov, Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications, Adv. Mater., 34, 32 (2022). DOI: 10.1002/adma.202270235 Google Scholar [13] K. Kawabata and M. Ueda, Nonlinear Landauer formula: Nonlinear response theory of disordered and topological materials, Phys. Rev. B, 106, 20 (2022) 1–39. DOI: 10.1103/physrevb.106.205104 Google Scholar [14] M.S. Al-Ghamdi, R.Z. Bahnam, and I.B. Karomi, Study and analysis of the optical absorption cross section and energy states broadenings in quantum dot lasers, Heliyon, 8, 9 (2022) e10587. DOI: 10.1016/j.heliyon.2022.e10587 Google Scholar [15] R. Joko Hussin and I. B. Karomi, Ultrashort cavity length effects on the performance of GaInP multiple-quantum-well laser diode, Results Opt., 12 (2023) 100452. DOI: 10.1016/j.rio.2023.100452 Google Scholar [16] U. W. Pohl, Epitaxy of Semiconductors Physics and Fabrication of Heterostructures, second ed. Springer Nature Switzerland, 2020. Google Scholar [17] T. Lill, Atomic Layer Processing Semiconductor Dry Etching Technology. WILEY-VCH GmbH, Boschstr, 2021. Google Scholar [18] D. Bimberg, Semiconductor Nanostructure. Springer-Verlag Berlin Heidelberg, 2008. Google Scholar [19] I. ?uti?, J. Fabian, and S. Das Sarma, Spintronics Fundamentals and applications, Rev. Mod. Phys., 76, 2 (2004) 323–410. DOI: 10.1103/revmodphys.76.323 Google Scholar [20] K. Shriram, R. R. Awasthi, and B. Das, Composition dependent structural, electrical, and optical properties of p-type InSb thin film for homojunction device application, Dig. J. Nanomater. Biostructures, 19, 1 (2024) 229–241. DOI: 10.15251/djnb.2024.191.229 Google Scholar [21] G. Hussain, G. Cuono, R. Islam, and A. Trajnerowicz, InAs / InAs 0.625 Sb 0.375 superlattices and their application for far-infrared, J. Phys. D. Appl. Phys., 22 (2022) 0–10. DOI: 10.1088/1361-6463/ac984d Google Scholar [22] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys., 89, 11 (2001) 5815–5875. DOI: 10.1063/1.1368156 Google Scholar [23] H. Tang, A. R. Barr, G. Wang, P. Cappellaro, and J. Li, First-Principles Calculation of the Temperature-Dependent Transition Energies in Spin Defects, J. Phys. Chem. Lett., 14, 13 (2023) 3266–3273. DOI: 10.1021/acs.jpclett.3c00314 Google Scholar [24] C. A. Lehner, T. Tschirky, T. Ihn, W. Dietsche, J. Keller, S. F?lt, and W. Wegscheider, Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems, Phys. Rev. Mater. 2, 2, 054601 (2018) 1–12. DOI: 10.1103/physrevmaterials.2.054601 Google Scholar [25] W. Yi, A. A. Kiselev, J. Thorp, R. Noah, B. M. Nguyen, S. Bui, R. D. Rajavel, T. Hussain, M. F. Gyure, P. Kratz, Q. Qian, M. J. Manfra, V. S. Pribiag, L. P. Kouwenhoven, C. M. Marcus, and M. Sokolich, Gate-tunable high mobility remote-doped InSb/In1?xAlxSb quantum well heterostructures, Appl. Phys. Lett., 106, 14 (2015) 142103. DOI: 10.1063/1.4917027 Google Scholar [26] F. Qu, J. v. Veen, F. K. de Vries, A. J. A. Beukman, M. Wimmer, W. Yi, A. A. Kiselev, B. M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele, C. M. Marcus, and L. P. Kouwenhoven, Quantized Conductance and Large g-Factor Anisotropy in InSb Quantum Point Contacts, Nano Letters, 16, 12 (2016) 7509–7513. DOI: 10.1021/acs.nanolett.6b03297 Google Scholar [27] Z. Lei , E. Cheah, F. Krizek, R. Schott, T. B?hler, P. M?rki, W. Wegscheider, M. Shayegan, T. Ihn, and K. Ensslin, Gate-defined two-dimensional hole and electron systems in an undoped InSb quantum well, Phys. Rev. Res., 5, 1 (2023) 13117. DOI: 10.1103/physrevresearch.5.013117 Google Scholar [28] S. I. Jubair, Influence of Dry and Wet Etching on AlInSb Contact Resistivity, Transfer Length , and Sheet Resistance Using Circular Transmission Model, J. Electron. Mater., 52 (2023) 2718–2721. DOI: 10.1007/s11664-023-10234-y Google Scholar [29] M. D. Feuer, Two-Layer Model for Source Resistance in Selectively Doped Heterojunction Transistors, IEEE Trans. Electron Devices, 32, 1 (1985) 7–11. DOI: 10.1109/t-ed.1985.21901 Google Scholar [30] K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y.Simmons, M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie, Interaction effects in a one-dimensional constriction, Phys. Rev. B - Condens. Matter Mater. Phys., 58, 8 (1998) 4846–4852. DOI: 10.1103/physrevb.58.4846 Google Scholar [31] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system, Phys. Rev. Lett., 88, 22 (2002). DOI: 10.1103/physrevlett.88.226805 Google Scholar [32] L. W. Smith, A. A. J. Lesage, K. J. Thomas, F. Sfigakis, P. See, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs/AlGaAs Heterostructure, 044015, (2016) 1–10. DOI: 10.1103/physrevapplied.5.044015 Google Scholar [33] S. T. Herbert, M. Muhammad, and M. Johnson, All-electric quantum point contact spin-polarizer, Nat. Nanotechnol., 4, November (2009) 759–764. Google Scholar [34] M. Reed, Nanostructured Systems, Semeconductors and semimetals, New York: Academic press limited, 1992. Google Scholar [35] S. P. Zimin, E. S. Gorlachev, I. I. Amirov, M. N. Gerke, H. Zogg, and D Zimin, Role of threading dislocations during treatment of PbTe films in argon plasma, Semicond. Sci. Technol, 22 (2007) 929–932. DOI: 10.1088/0268-1242/22/8/018 Google Scholar [36] Y. Zhang, M. Sun, H. Wong, Y. Lin, P. Srivastava, C. Hatem, M. Azize, D. Piedra, and L. Yu, Origin and Control of OFF -State Leakage Current in GaN-on-Si Vertical Diodes, IEEE Trans. Electron Devices, 62, 7 (2015) 2155–2161. DOI: 10.1109/ted.2015.2426711 Google Scholar [37] Z. H. Feng, S. Member, S. J. Cai, K. J. Chen, and K. M. Lau, Enhanced-Performance of AlGaN–GaN HEMTs Grown on Grooved Sapphire Substrates, IEEE ELECTRON DEVICE Lett., 26, 12 (2005) 870–872. DOI: 10.1109/led.2005.859675 Google Scholar [38] A. Hofer, G. Benstetter, R. Biberger, C. Leirer, and G. Brüderl, Analysis of crystal defects on GaN-based semiconductors with advanced scanning probe microscope techniques, Thin Solid Films, 544 (2013) 139–143. DOI: 10.1016/j.tsf.2013.04.049 Google Scholar [39] F. Giannazzo, F. Roccaforte, F. Iucolano, V. Raineri, F. Ruffino, and M. G. Grimaldi, Nanoscale current transport through Schottky contacts on wide bandgap semiconductors, J. Vac. Sci. Technol., 27, 2 (2009) 789–793. DOI: 10.1116/1.3043453 Google Scholar [40] D. G. Hayes, C. P. Allford, G. V. Smith, C. McIndo, L. A. Hanks, A. M. Gilbertson, L. F. Cohen, S. Zhang, E. M. Clarke, P. D. Buckle, Electron transport lifetimes in InSb/Al1-xInxSb quantum well 2DEGs, Semicond. Sci. Technol., 32 (2017) 1–8. DOI: 10.1088/1361-6641/aa75c8 Google Scholar [41] C. Couso, V. Iglesias, M. Porti, S. Claramunt, M. Nafría, N. Domingo, A. Cordes, G. Bersuker, Conductance of Threading Dislocations in InGaAs / Si Stacks by Temperature-CAFM Measurements, IEEE ELECTRON DEVICE Lett., 37, 5 (2016) 640–643. DOI: 10.1109/led.2016.2537051 Google Scholar [42] M. Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications, second ed. Springer, 2010. Google Scholar [43] G. Christopher J. McIndoa, David G. Hayesa, Andreas Papageorgioua, Laura A. Hanksa and P. D. B. V. Smitha, Craig P. Allforda, Shiyong Zhangb, Edmund M. Clarkeb, Determination of the transport lifetime limiting scattering rate in InSb-AlxIn1?xSb quantum wells using optical surface microscopy, Phys. E, 91 (2017) 169–172. Google Scholar [44] J. A. Nixon, J. H. Davies, and H. U. Baranger, Breakdown of quantized conductance in point contacts calculated using realistic potentials, Phys. Rev. B, 43, 15 (1990) 638–641. DOI: 10.1103/physrevb.43.12638 Google Scholar [45] J. C. Chen, Y. Lin, K. T. Lin, T. Ueda, and S. Komiyama, Effects of impurity scattering on the quantized conductance of a quasi-one-dimensional quantum wire, Appl. Phys. Lett., 94, 012105 (2009) 1–3. DOI: 10.1063/1.3067995 Google Scholar [46] A. Bose, Effect of Phonons and Impurities on the Quantum Transport in XXZ Spin-Chains, 2022. Google Scholar [47] G. R. Nash, S. J. Bending, P. D. Buckle, D. P. Morgan, T. M. Burke, and T. Ashley, Characterization of a two-dimensional electron gas in an InSb/InAlSb heterostructure using surface acoustic, Semicond. Sci. Technol, 17 (2002) 1111–1114. DOI: 10.1088/0268-1242/17/10/314 Google Scholar [48] J.M.S. Orr, A.M. Gilbertson, M. Fearn, O.W. Croad, C. J. Storey, L. Buckle, M.T. Emeny, P.D. Buckle, and T. Ashley, Electronic transport in modulation-doped InSb quantum well heterostructures, Phys. Rev. B, 77, 165334 (2008) 1–7. DOI: 10.1103/physrevb.77.165334 Google Scholar [49] P. P. Das, N. K. Bhandari, J. Wan, J. Charles, M. Cahay, K. B. Chetry, R. S. Newrock, and S. T. Herbert, Influence of surface scattering on the anomalous conductance plateaus in an asymmetrically biased InAs/In0.52Al0.48As quantum point contact, Nanotechnology, 23, 215201 (2012) 1–9. DOI: 10.1088/0957-4484/23/21/215201 Google Scholar [50] I.S. Arafat and N.B. Balamurugan, Influence of Scattering in Near Ballistic Silicon NanoWire Metal-Oxide-Semiconductor Field Effect Transistor, J. Nanosci. Nanotechnol., 16, 6 (2016) 6032–6036. DOI: 10.1166/jnn.2016.12142 Google Scholar [51] R. Chaghi, C. Cervera, H. A?t-Kaci, P. Grech, J.B. Rodriguez, and P. Christol, Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes, Semicond. Sci. Technol., 24 (2009) 1–6. DOI: 10.1088/0268-1242/24/6/065010 Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved
  • 《/h-BN/AuNPs mixed-dimensional heterostructure》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-01
    • Skip to content Accessibility Links Skip to content Skip to search IOPscience Skip to Journals list Accessibility help IOP Science home Accessibility Help Search Journals Journals list Browse more than 100 science journal titles Subject collections Read the very best research published in IOP journals Publishing partners Partner organisations and publications Open access IOP Publishing open access policy guide IOP Conference Series Read open access proceedings from science conferences worldwide Books Publishing Support Login IOPscience login / Sign Up Close Click here to close this panel. Search all IOPscience content Article Lookup Select journal (required) Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004) Volume number: Issue number (if known): Article or page number: Nanotechnology Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing. Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications. We are proudly declaring that science is our only shareholder. ACCEPTED MANUSCRIPT Floating-gate memristor based on a MoS2/h-BN/AuNPs mixed-dimensional heterostructure Shirong Qin1, Haiming Zhu1, Ziyang Ren1, Yihui Zhai1, Yao Wang1, Mengjuan Liu2, Weien Lai1, Arash Rahimi-Iman1, Sihan Zhao3 and Hui-Zhen Wu4 Accepted Manuscript online 28 June 2024 ? © 2024 IOP Publishing Ltd What is an Accepted Manuscript? DOI 10.1088/1361-6528/ad5cfc Download Accepted Manuscript PDF Figures Skip to each figure in the article Tables Skip to each table in the article References Citations Article data Skip to each data item in the article What is article data? Open science Article metrics Submit Submit to this Journal Permissions Get permission to re-use this article Share this article Article and author information Author e-mailsqinshrong@163.com Author affiliations1 physics, Zhejiang University, Zhejiang Province, Hangzhou, Hangzhou, 310058, CHINA 2 Department of Physic, State Key Laboratory for Silicon Materials, Yuhangtang Road no.866, Hangzhou, 310027, CHINA 3 Department of Physic, State Key Laboratory for Silicon Materials, ZheDa Road no.38, Hangzhou, 310027, CHINA 4 Department of Physics, Zhejiang University, Zhejiang 310027, Hangzhou, 310000, CHINA ORCID iDsShirong Qin https://orcid.org/0000-0002-8081-325XHui-Zhen Wu https://orcid.org/0000-0001-5858-1969 Dates Received 20 March 2024 Revised 4 June 2024 Accepted 28 June 2024 Accepted Manuscript online 28 June 2024 Journal RSS Sign up for new issue notifications 10.1088/1361-6528/ad5cfc Abstract Memristors have recently received substantial attention because of its promising and unique application scenes emerging in neuromorphic computing which can achieve gains in computation speed by mimicking the topology of brains in electronic circuits. Traditional memristors made of bulk MoO3 and HfO2, etc. suffer from low switching ratio, short durability and poor stability. In this work, a floating-gate memristor is developed based on a mixed-dimensional heterostructure which is comprised of two-dimensional (2D) molybdenum disulfide (MoS2) and 0-dimensional (0D) Au nanoparticles (AuNPs) separated by an insulating hexagonal boron nitride (h-BN) layer, hereafter, MoS2/h-BN/AuNPs. We find that under the modulation of back-gate voltages, the MoS2/h-BN/AuNPs device operates reliably between a high resistance state (HRS) and a low resistance state (LRS) and that it shows multiple stable LRS states, demonstrating high potential of our memristor in application of multibit storage. The modulation effect can be attributed to the electron quantum tunneling between the AuNPs charge-trapping layer and MoS2 channel. Our memristor exhibits excellent durability and stability: the HRS and LRS remain more than 104 s without obvious degradation and the on/off ratio retains > 104 after more than 3000 switching cycles. We also demonstrate frequency-dependent memory properties upon electrical and optical pulse stimuli. Export citation and abstract BibTeX RIS During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record. Back to top 10.1088/1361-6528/ad5cfc You may also like Journal articles If it's pinched it's a memristor Towards engineering in memristors for emerging memory and neuromorphic computing: A review Recent progress in transparent memristors TiO2-based memristors and ReRAM: materials, mechanisms and models (a review) Comparative analysis of memristor models and memories design Memristive devices based hardware for unlabeled data processing IOPscience Journals Books IOP Conference Series About IOPscience Contact Us Developing countries access IOP Publishing open access policy Accessibility IOP Publishing Copyright 2024 IOP Publishing Terms and Conditions Disclaimer Privacy and Cookie Policy Publishing Support Authors Reviewers Conference Organisers This site uses cookies. By continuing to use this site you agree to our use of cookies. IOP Publishing Twitter page IOP Publishing Facebook page IOP Publishing LinkedIn page IOP Publishing Youtube page IOP Publishing WeChat QR code IOP Publishing Weibo page