《添加石墨烯制造的新型复合材料鞋》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-11-13
  • 在市场上出现的新产品中, 已经应用石墨烯材料能够为普通物体添加了一些功能性的能力: 具有更好散热性能的鞋类。由意大利Istituto Italiano di Tecnologia的石墨烯旗舰公司与在意大利处于领先地位的托斯卡纳制鞋公司FADEL合作研发, FADEL公司获得有关专利的新研发的技术使得鞋类具备了更好的温度调节和耐久性。

    在这款新型鞋的制造过程中,当将几层石墨烯薄片添加到聚氨酯(FADEL鞋底的材料)中,实验室测试显示出材料中分散的热量在升高,防水性能变得更强以及抗菌性能得到不断改善。结合为这种拥有更好的用户体验的特殊类型的鞋开发的透风装置取得的这些效果。这款鞋的原型参加了在米兰的国际鞋类展览会的展示。

    石墨烯由于其独特的二维模型结构所带来的优异的导电性能,力学性能和散热性能开创了广阔的应用领域,吸引了越来越多的关注。这种令人着迷的特性使石墨烯成为各种实际应用中的很有前景的制备材料。通过对石墨烯进行功能化改性,可以轻易地制备出不同的石墨烯纳米复合材料。可最大程度上保留石墨烯本体属性,并通过功能化引入其它一些有意义的特性。进一步的深入研究将获得一系列性能更为优异的新型石墨烯功能材料,并从科学及技术上为进一步实现该类材料的实际应用奠定基础。

    石墨烯的主要特性之一是它散热性能优越,因此我们开始考虑将通过液相剥离方式产生的石墨烯(可以以较低的价格生产大量石墨烯的方法)结合到聚氨酯中——用于聚氨酯这种材料鞋类的鞋底。这样就创造出了一种散热效果比纯聚氨酯材料要好50%的复合材料。IIT石墨烯实验室主任、石墨烯旗舰公司行政委员会主席维托里奥•佩莱格里尼(Vittorio Pellegrini)说。“我们用少量的石墨烯(约1%)改善了鞋类的散热性能,这在生产所用成本并没有比以前多很多的产品方面非常重要。”

    一旦IIT石墨烯实验室的研究人员已经优化了石墨烯添加进聚苯乙烯的方式,由IIT的初创公司和石墨烯旗舰公司协会会员BeDimensional srl完成了石墨烯生产,其核心操作是在添加石墨烯以及在制造业应用领域的其他有关材料的新型复合材料的研发基础上进行。

    石墨烯旗舰公司是知识、技能和技术转让的强大加速器。佩莱格里尼说,如果没有石墨烯旗舰公司这只鞋,这种鞋还将需要很多年才能研发出来。我们从分享我们的研究成果和通过旗舰公司从其他科学家那里获得灵感的能力中受益匪浅。

    石墨烯旗舰公司的创新主管Kari Hjelt博士说,我们将继续见证石墨烯技术带来市场波动以及改革创新的潜力。石墨烯能够同时增强多个产品属性的特殊性能,并且就像目前的情况一样,可以为许多产品创造一个商业上的竞争优势。

    石墨烯旗舰公司的科学技术职员兼管理小组主席安德里亚·c·法拉利(Andrea c . Ferrari)教授补充说,这是石墨烯及相关材料从实验室向工厂车间稳步迈进的又一例证。随着越来越多的公司成为合作伙伴或旗舰公司的联合成员,旗舰公司不仅推动了石墨烯和相关材料的科学技术的发展,而且还推动了改革创新。

相关报告
  • 《俄开发基于石墨烯和玻璃的复合材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-10-28
    • 俄罗斯科研人员研发出借助激光生产出基于石墨烯和玻璃的导电且稳定的复合材料。这项技术的优点是成本低,石墨烯结构成为玻璃的一部分,而不仅仅是涂层。相关研究成果近日发表在《先进材料》杂志上。   实现这种技术的第一步是使玻璃具有导电性。目前解决该问题的方案是从金属及其氧化物、导电聚合物或碳中制造纳米涂层。然而,研究发现,涂层会随着时间的推移而被磨掉,且使用寿命有限。   俄科研人员提出了一种借助激光利用石墨烯对玻璃进行改性的方法。这种技术有助于在任何玻璃产品中制造出能够成为集成电子产品基础的石墨烯导电结构,目的是使用石墨烯来制造新一代电子产品。   托木斯克理工大学化学和生物医学技术研究所教授叶夫根尼·舍列梅特介绍说,俄科研人员首次展示了如何借助激光生产基于石墨烯和玻璃的导电且稳定的复合材料。新技术允许用石墨烯“画出”所需的结构,这些结构融合到几毫米厚的玻璃中,确保了材料可长时间使用而性能不会降低。   舍列梅特称,利用基于石墨烯和玻璃的新型复合材料,科研人员可以开发廉价高效的柔性电子产品、新型光电器件以及具有扩展功能的各种玻璃产品。
  • 《超快响应的形状记忆高分子/石墨烯复合材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-05-06
    • 形状记忆高分子材料可以在外界刺激下按照既定的程序变形,这使得它在驱动器、传感器、药物传输等方面具有巨大的应用前景。由于高分子材料本身的低导热系数和缓慢的链运动速率,形状记忆高分子材料的响应速度较其它形状记忆材料(如形状记忆合金)仍然具有很大的差距。 近日,浙大高超(共同通讯)、许震(共同通讯)团队与马列(共同通讯)团队及其他合作者共同努力,突破了这一响应速度难题。该项工作以高度可拉伸的石墨烯气凝胶为模板,在其内部构筑由聚己内酯(polycaprolactone,PCL)纳米薄膜(2.5-60nm)搭建而成的形状记忆网络。其中,石墨烯纳米网络作为快速能量转换和能量注入通道,PCL纳米网络作为快速能量传递和形变载体。这种具有PCL/石墨烯互穿网络结构的气凝胶纳米复合材料在电信号刺激下,响应时间仅为50毫秒,响应速度达175±40 mm s-1,最大形变约100%。 该工作以“Millisecond Responseof Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable GrapheneFramework”为题发表在ACS Nano 上。 传统的形状记忆高分子复合材料多采用与导电添加剂共混的方法制备,从而导致导电网络到SMP基体的热传导距离一般在微米级。然而,高分子材料的热导率一般都较低 (比如本文使用的聚己内酯PC,~ 0.3 W mK-1),这就导致传统的共混形状记忆高分子材料的响应时间一般在秒级以上。此项研究以高度可拉伸的气凝胶为模板,在其表面构筑纳米级聚己内酯连续纳米层(2.5-60 nm),减少热传递距离。 此项研究所使用的可拉伸气凝胶是基于团队2018年的“Highly Stretchable Carbon Aerogels”工作(Nat.Commun.2018, 9, 881)进行展开(《自然·通讯》浙大高超教授团队研发出高可拉伸全碳气凝胶弹性体)。利用石墨烯气凝胶作为快速的能量注入和转换骨架,实现SMP快速相转变。最终得到响应时间在毫秒级(50 ms),伸长率在100% 以上的超轻复合气凝胶材料。 同时,该项工作利用浙大航空航天学院的王宏涛课题组自主开发的原位TEM样品杆,观察到复合气凝胶基本组成单元—石墨烯/PCL复合片在电刺激下的形状记忆行为。 该快速响应的超轻复合气凝胶材料具有广阔的应用前景,可被设计为超快速熔断器来保护精密电路,在过载情况下,可在134 ms 内断路,保护用电器。同时,它还可以与电磁铁结合,做为微型振荡器。 高超教授的博士研究生郭凡为论文第一作者,马列教授的博士研究生郑晓闻为论文第二作者。浙江大学高分子科学研究所马列教授和浙江大学航空航天学院王宏涛教授为这个工作的完成提供了大力支持和合作指导。论文得到了国家重点研发计划、国家自然科学基金委等相关经费的资助。