《Nature | KRAS抑制的能量和变构景观》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-12-19
  • 2023年12月18日,巴塞罗那科学技术研究所的研究人员在Nature杂志在线发表了题为The energetic and allosteric landscape for KRAS inhibition的文章。

    成千上万的蛋白质现在已经被基因验证为数百种人类疾病的治疗靶点。然而,实际上只有极少数被成功瞄准,许多被认为是“无药可救”。对于通过蛋白质-蛋白质相互作用发挥功能的蛋白质来说尤其如此: 直接抑制结合界面是困难的,需要鉴定变构位点。然而,大多数蛋白质没有已知的变构位点,也不存在任何蛋白质的全面变构图谱。

    该研究通过绘制 KRAS 中抑制变构通信的多个全局图谱来解决这一缺陷。研究人员量化了 > 26,000个突变对 KRAS 折叠及其与六个相互作用伙伴的结合的影响。双突变体中的遗传相互作用使研究人员能够进行大规模的生物物理测量,推断出 > 22,000个因果自由能变化。这些能量景观量化突变如何调整信号蛋白的结合特异性,并为重要的治疗靶标绘制抑制性变构位点。变构增殖在 KRAS 的中央 β 片上特别有效,并且多个表面口袋被遗传验证为变构活性,包括蛋白质的 C- 末端叶中的远端口袋。变构突变通常抑制与所有测试效应物的结合,但它们也可以改变结合特异性,揭示调节途径激活的调节、进化和治疗潜力。使用这里描述的方法,应该可以快速和全面地鉴定许多蛋白质中的变构靶位点。

  • 原文来源:https://www.nature.com/articles/s41586-023-06954-0
相关报告
  • 《Nature | 大脑感知、激活和抑制全身炎症的机制》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-05-03
    • 2024年5月1日,哥伦比亚大学Charles S. Zuker、Hao Jin共同通讯在Nature发表题为A body–brain circuit that regulates body inflammatory responses的文章,揭示了一种有效调控炎症反应的体-脑回路。 研究人员证明,外周免疫损伤,如脂多糖(LPS)给药,可以有效激活脑干内孤束尾核(caudal nucleus of the solitary tract, cNST)的神经元。值得注意的是,沉默这些LPS激活的cNST神经元会导致不受控制的炎症反应加剧,其特征是促炎细胞因子的急剧增加和抗炎介质的减少。相反,激活这些神经元可以抑制炎症,降低促炎细胞因子水平,同时增强抗炎反应。 通过单细胞RNA测序和功能成像实验,作者确定了表达多巴胺β羟化酶(dopamine beta-hydroxylase, DBH)的特定群体的cNST神经元是该免疫调节回路中的关键参与者。这些DBH+神经元的清除或激活分别再现了失调或抑制的炎症反应,突出了它们在维持免疫稳态中的关键作用。但是,大脑是如何感知和应对周围炎症的呢?作者证明了迷走神经感觉神经元的不同群体对促炎和抗炎细胞因子有选择性的反应,并将这些信息传递给cNST DBH+神经元。具体而言,TRPA1+迷走神经神经元对抗炎细胞因子IL-10有反应,而CALCA+神经元被促炎信号激活。值得注意的是,激活这些迷走神经群体模拟了直接调节cNST DBH+神经元的效果,强调了它们在神经免疫回路中的功能整合。 这一发现的治疗潜力是惊人的。在溃疡性结肠炎模型中,激活TRPA1+迷走神经神经元或cNST-DBH+神经元保护小鼠免受致命的LPS诱导的内毒素血症的影响,并改善疾病的严重程度。相反,这种回路的持续激活削弱了宿主清除细菌感染的能力,凸显了最佳免疫功能所需的微妙平衡。 这项开创性的工作揭示了一种以前未被重视的监测和调节炎症反应的体脑回路。通过确定关键的神经元参与者及其功能作用,作者为理解大脑如何调节免疫提供了一个框架,并为从自身免疫疾病到细胞因子风暴和感染性休克等一系列免疫疾病的治疗干预提供了令人兴奋的新途径。这一神经免疫轴的发现为我们理解神经系统和免疫系统之间复杂的相互作用开辟了一个新的前沿,为进一步探索免疫调节的神经回路及其开发新的免疫调节疗法的潜力铺平了道路。
  • 《Nature | 化学蛋白质组学发现WRN螺旋酶的共价变构抑制剂》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-27
    • 2024年4月24日,美国Vividion Therapeutics的研究人员在Nature杂志发表了题为Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase的文章。 WRN螺旋酶是治疗微卫星不稳定(MSI)癌症的一个前景广阔的靶点,因为它在解决错配修复机制失效的细胞中积累的有害非规范DNA结构方面发挥着至关重要的作用。目前还没有直接针对人类 DNA 或 RNA 螺旋酶的获批药物,部分原因是开发针对这类蛋白的强效选择性化合物具有挑战性。 该研究介绍了通过化学蛋白质组学发现的处于临床阶段的 WRN 共价异位抑制剂 VVD-133214。这种化合物可选择性地与位于螺旋酶结构域区域的半胱氨酸(C727)结合,该区域在 DNA 解旋过程中会发生结构域间移动。VVD-133214 与核苷酸协同结合 WRN 蛋白,稳定了缺乏适当螺旋酶功能所需的动态灵活性的紧凑构象,导致 MSI-高(MSI-H)细胞(而非微卫星稳定细胞)出现广泛的双链 DNA 断裂、核肿胀和细胞死亡。该化合物在小鼠体内耐受性良好,在多个MSI-H结直肠癌细胞系和患者衍生异种移植模型中可导致肿瘤的显著消退。 该工作显示了一种抑制 WRN 功能的异构方法,它可以规避癌细胞中内源性 ATP 辅因子的竞争,并将 VVD-133214 定义为治疗 MSI-H 癌症患者的一种有前途的候选药物。