《中国科学院福建物质结构研究所报道Ga-Y双原子催化剂电化学合成尿素》

  • 来源专题:关键原材料知识服务平台
  • 编译者: 费鹏飞
  • 发布时间:2025-04-15
  • 2月25日,中国科学院福建物质结构研究所在《Advanced Materials》上发表题为“Electrosynthesis of Urea on High-Density Ga─Y Dual-Atom Catalyst via Cross-Tuning”的论文,报道通过交叉调节在高密度Ga─Y双原子催化剂上电合成尿素。

    通过C─N偶联途径将二氧化碳(CO?)和硝酸根(NO??)电化学转化为尿素,为传统的工业尿素生产技术提供了一种可持续的替代方案,但目前仍受限于产率低、法拉第效率低以及偶联动力学不足等问题。研究人员开发了一种高密度Ga─Y双原子催化剂,其Ga和Y的负载量高达14.1 wt.%,且负载于N、P共掺杂的碳基底(Ga/Y-CNP)上,用于尿素电合成。该催化剂通过协同还原CO?和NO??,促进了高效的C─N偶联,从而实现了在相对于可逆氢电极-1.4 V时高达41.9 mmol h?1 g?1的尿素产率和22.1%的法拉第效率。原位光谱和理论计算表明,其卓越的性能归因于相邻Ga─Y位点之间的交叉调节,这种调节能够相互优化它们的电子态,从而促进Ga位点上的CO?还原为CO,以及Y位点上的NO??转化为羟胺(NH?OH),随后CO和NH?OH中间体在Ga─Y位点上自发偶联,形成C─N键。这项工作为通过交叉调节活性位点来操纵C─N偶联路径、生产高附加值化学品提供了一种开创性的策略。

  • 原文来源:https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202420593
相关报告
  • 《大连化学物理研究所单原子催化剂应用于生物质转化反应研究取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-06-07
    •   近日,我所航天催化与新材料中心的王爱琴研究员、张涛院士团队在长期从事单原子催化剂和生物质转化研究基础上,首次将高金属载量的Ni-N-C单原子催化剂应用于生物质转化反应中并取得重要进展。相关工作以通讯形式发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为热点文章(Hot paper)。   生物质作为一种可再生碳资源,将其转化为多元醇、芳烃、烷烃等高附加值化学品具有重要意义。Ni基催化剂在生物质的加氢、加氢裂解和加氢脱氧等反应中已被证明具有高催化活性。然而,在生物质转化的反应介质中(强酸、高温、水热),大部分Ni基催化剂并不能够稳定存在,这主要是由于低价态Ni0/Niδ+催化活性物种在酸溶液中发生溶解、流失以及聚集长大等过程,从而导致催化剂的失活。该缺点也成为了限制Ni基催化剂应用于生物质转化反应中巨大的障碍。因此,急需发展一种新型耐酸稳定的Ni基催化剂并用于生物质加氢领域。   近来,M-N-C单原子 (M通常指Fe/Co/Ni等过渡金属) 在ORR、HER、CO2电还原等电化学反应以及有机合成中表现出优异性能。得益于过渡金属M与杂原子N之间的强配位作用,M-N-C单原子催化剂有望抵抗住酸流失和热聚集。此前,该研究团队已经合成出单原子分散的Co-N-C催化剂和Fe-N-C催化剂(J. Am. Chem. Soc., Chem. Sci.),经过酸刻蚀处理后的Co/Fe单原子在还原反应和氧化反应中表现出非常优异的稳定性。在此基础上,近日,该团队又发展了金属载量高达7.5wt%的Ni-N-C单原子催化剂,并应用于纤维素转化制备多元醇 (乙二醇和羟基丙酮)反应。对比活性炭负载的镍纳米颗粒催化剂 (Ni/AC),Ni-N-C单原子催化剂在245°C、6MPa的H2氛围、强酸和高温水热的苛刻条件下,表现出很好的耐久性,催化剂可循环7次以上且未见明显的活性降低和单原子聚集长大。通过深入表征,成功解析出Ni-N-C单原子催化剂的活性中心为(Ni-N4)┅N构型,并通过与清华大学的李隽教授合作,借助理论计算与对照实验,揭示了H2分子是通过在Ni2+(路易斯酸位)和近邻未配位的吡啶态N原子 (路易斯碱位) 组成的FLPs(受阻路易斯酸碱对)位点上以异裂方式解离活化的。   上述研究工作得到国家自然科学基金委、科技部、中国科学院战略性先导科技专项和教育部能源材料化学协同创新中心的资助。
  • 《中国科学院合肥研究院设计出直接燃料电池催化剂》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-24
    • 近期,中国科学院合肥物质科学研究院固体物理研究所纳米材料与器件技术研究部环境与能源纳米材料中心在以有机物5-羟甲基糠醛作为燃料的燃料电池研究中取得新进展,合成了负载在炭黑上的铂与硫化镍纳米颗粒双功能催化剂(PtNiSx/CB),不仅可以催化阳极燃料5-羟甲基糠醛(HMF)氧化为2,5-呋喃二甲酸(FDCA),还能够驱动阴极氧还原反应,实现在输出能量的同时将燃料转变为更高价值的产物。相关研究成果以Sustainable 2,5-furandicarboxylic synthesis by a direct 5-hydroxymethylfurfural fuel cell based on a bifunctional PtNiSx catalyst为题,发表在Chemical Communications上。 FDCA有望在化工生产中取代对苯二甲酸合成聚合物,是一种重要的近市场化工产品,主要通过热催化、光催化、电催化等方式氧化HMF得到。其中,电化学策略可与电化学析氢反应(HER)或电催化有机氢化合成结合,产生额外的高附加值产品,并提高能量转换效率。可持续和更节能的电催化FDCA合成工艺是燃料电池研究中的热点。 燃料电池作为一种可持续的能量转换和存储技术,因其能量转换效率高、环境友好等优点得到广泛研究和发展。燃料电池技术包含两个重要的化学反应——阳极的燃料氧化反应和阴极氧还原反应(ORR),均需要利用高效且价格相对低廉的催化剂以降低反应能垒,进而提高反应动力学。 基于此,研究人员设计出氧还原与有机合成相结合的直接HMF燃料电池(DHMF-FC)形式;采用浸渍、熏硫与煅烧的策略,合成了双功能PtNiSx催化剂。研究发现,铂与硫化镍间存在界面,Pt和NiSx纳米颗粒之间密切的相互作用与界面效应使得该催化剂具有良好的电化学ORR和HMF氧化催化活性。此外,NiSx的引入有利于ORR四电子反应过程的进行,硫元素也可有效防止金属颗粒的团聚。半电池的电化学测试和ICP-AES测试结果显示,PtNiSx/CB具有优异的ORR与OER性能,电化学活性面积(79 m2 gPt-1)高于商业Pt/C(64 m2 gPt-1),且其中铂的负载量(7.60 wt%)低于商业铂碳(20 wt%)。加入HMF后的燃料电池在60℃时,开路电压为0.52 V,放电效率达2.12 mW cm-2,电流密度为6.8 mA cm-2;对放电反应电解液进行液相色谱检测,发现HMF几乎完全转化为FDCA,转化率接近98%,选择性达到100%。该研究有助于设计和发展双功能的燃料电池电催化剂。 研究工作得到国家自然科学基金、安徽省自然科学基金和中国博士后科学基金的支持。