《日本CCUS技术研发与产业化进程分析》

  • 来源专题:关键矿产与绿色冶金
  • 编译者: 欧冬智
  • 发布时间:2025-06-02
  • 中国科学院文献情报系统双碳战略研究团队运营的“双碳情报”公众号正式上线,重点报道全球双碳战略规划和政策动态。日本在CCUS(碳捕集、利用与封存)技术的研发与产业化方面取得显著进展。2025年3月,日本金属与能源安全机构(JOGMEC)制定了《JOGMEC/能源事业本部技术事业战略》,提出强化对CCUS技术的支持,以实现2050年碳中和目标。日本自2020年提出2050年碳中和目标以来,逐步推进了一系列CCS项目,包括7个潜在项目的选定和资金支持计划,并扩展至9个项目,其中5个在日本国内,4个在海外,合计年封存能力达到2000万吨二氧化碳。此外,日本通过法律保障和合作机制创新,如颁布《二氧化碳捕集与封存事业法》和签署日韩氢能及CCS合作备忘录,推动CCS商业化和区域协作。在CCUS核心技术方面,日本三菱重工业公司开发的船上碳捕集和储存系统(OCCS)获得日本海事协会的基本设计批准,并承接了巴西石油公司的FPSO碳捕集模块预研项目。日本能源技术综合开发机构(NEDO)启动了“绿色创新基金事业”首台实证项目,以验证高效稻壳生物炭制造装置。大阪大学联合多家企业开展了二氧化碳合成甲醇与对二甲苯的实证试验,实现了从直接空气捕获二氧化碳到化工原料的转化。这些举措标志着日本在推进低碳能源转型和实现碳中和目标方面的努力,为国际航运业和农业等领域提供了重要的技术支持和示范效应。
  • 原文来源:http://mp.weixin.qq.com/s?__biz=MzIyNDM4MDgyNA==&mid=2247494728&idx=1&sn=aba33c4d87e23748dc19e3ececd84fe2&scene=0#wechat_redirect
相关报告
  • 《日本产业技术综合研究所(AIST)先进电池领域调研分析》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-12-23
    • 国立研究开发法人产业技术综合研究所(英文为National Institute of Advanced Industrial Science and Technology,简称“AIST”)作为日本最大的公共研究机构,专注于研发有利于日本产业和社会发展的技术及其产业化问题,起到将革新技术与产业化连结起来的“桥梁”作用,同时还与世界各国的主要研究机构签订合作备忘录,构建积极的全球合作网络。目前产业技术综合研究所在日本的研究据点有11个,拥有约2300名研究人员。 英文名称:Research Institute of Electrochemical Energy 中文译名:电池技术研究部 总体研究内容: 1、先进产业技术的提出,包括新产业技术种子(对推进研究开发有必要性的发明技术、能力、人才、设备等)的提出、高风险技术的实验证明等。 2、产业基础技术的提供,包括国际工业标准、材料·性能评价技术、寿命预测等。 3、核心竞争力的强化,包括纳米材料学、应用表面科学、材料开发方法论等。 研究课题 电池技术研究部主要研究的课题共13个,其中与电池相关的课题共9个,具体内容如下: 1.使用固体高分子电解质开发电化学器件电极(获日本“电化学学会女性跃进奖”) ①对环境友好的、安全的直接燃料电池方面的提案 给固体高分子型燃料电池供应甲醇等氢以外的燃料、在电极上直接氧化发电的直接燃料电池有望作为可移动电源和移动终端的充电器实现部分实用化和可利用化。日本产业技术综合研究所开发了以抗坏血酸(维他命C)为燃料的直接燃料电池。这种燃料电池不使用氢和甲醇,燃料极反应与摄取抗坏血酸时在生物体内产生的代谢反应相同,是安全无害的燃料电池。而且,抗坏血酸的氧化具有不必使用贵金属催化剂、可在电极上使用表面积大的碳材料这一特征。 ②金属空气蓄电池的固体高分子型空气电极 金属空气电池因具有高能密度,作为创新性车载蓄电池,有望实现其蓄电池化。空气电极被指出具有过电压较大、有碱性电解液的电极润湿和电解液泄露的危险、因空气中的二氧化碳而在气体扩散电极细孔内会出现碳酸盐沉淀等问题。为了改善这些问题并大幅度提高性能,电池技术研究部提出了使用阴离子交换膜及其离子聚合物的固体高分子型空气电极,作出了抑制因空气中的二氧化碳产生的性能低下以及防止液漏的可能性的报告。 ③基于化学镀层技术的高分子作动器元件 90年代,旧大阪工业技术研究所开发出了使用特殊的化学镀层法使高分子电解质膜的两面直接析出白金的、并利用了给电极接合体在水中施加电位这一现象的高分子作动器。但是,因水的电分解而产生的气泡问题成为了待解决的课题。于是,电池技术研究部着眼于根据把电极从白金变为金来扩大电位窗这一内容,通过对金属络合物和还原剂的大力研究,成功在高分子电解质膜的两面形成了平均的金电极层,与原来使用白金电极的作动器相比,在没有气体产生的情况下可形成大的弯曲。 ④化学镀层(吸附反应)下的膜电极接合体制造技术 利用化学镀层法来制造膜电极结合体的技术原本是因固体高分子型电解水制氢法在旧大阪工业技术试验所开发出的技术。此方法是在膜中吸附金属络合物,用还原剂在高分子电解质膜的表面使白金直接析出的方法,具有粘着性高、在高电流密度操作下不易产生气体等特点。 2.全固态锂电池的固-固界面结构技术 ①根据固体电解质的微细化·均匀分散来制造良好的复合电极 利用Li2S-P2S5固体电解质在加压条件下可常温烧结的特性,通过固体电解质的微细化和室温成型(常温加压烧结),电池技术研究部开发了在产业上更加方便使用的密集电极层的制作工艺。该研究部通过各种各样的方法探讨了固体电解质的粒子形状控制,并通过均匀分散硫化物固体电解质、改善电极的同质性、增大电极-电解质的接触面积、使电极层变得高密度化(减小空隙)、在正极活性物质(氧化物)粒子的接触处产生局部应力的方法,减少正极活性物质粒子的破碎。低弹性系数和可以假塑性变形的硫化物固体电解质作为控制向电极活性物质粒子进行应力集中的缓冲层起到了不错的效果。 ②全固态锂硫电池 日本产业技术综合研究所使用已开发的易于成型的高容量电极活性物质Li3NbS4,开发出了利用Li2S-P2S5固体电解质的全固态蓄电池。因为Li3NbS4是通过常温加压烧结可以假塑性变形的材料,所以在室温下的加压成型过程中加压的同时,可形成90%以上的致密成型体。即使充放电时产生大约30%的体积变化,也不产生裂缝,可实现380mAh g-1的可逆充放电并有望发现其良好的循环特性。 3.新制造工艺下抑制LiNiO2退化 虽然镍酸锂作为高容量锂离子蓄电池正极材料被抱有期待,但是在高电位充电时周期退化严重,无法充分灵活运用其特性。在目前为止对LiFeO2-Li2MnO3正极材料研究成果的基础上,通过新的制造工艺(Li2NiO3热分解法)的应用,开发出了可保持高容量(>190mAh/g)并大幅抑制了周期退化的锂过量镍酸锂正极材料。 今后的计划:在研究数据的基础上,寻找正极材料开发合作伙伴,并向电池制造商提供供应。并且,为了进一步改善电池特性,电池技术研究部将进行制造方法的探讨以及异金属置换效果的探讨。另外,该部门也将继续进行LiFeO2-Li2MnO3正极材料的开发以及大型锂离子蓄电池使用的价格便宜且高性能的正极材料的开发。 4.利用NMR开发电池材料测评技术 电池技术研究部在广泛应用于有机结构鉴别的NMR(核磁共振)技术上添加了“倾斜磁场”和“电场”,并正在测定作为与电池中存在的离子(阴离子、阳离子)“动向”相关的物性的扩散系数(m2s-1)和移动率(m2s-1V-1)。而且,该部门也在进行使用了扩散系数和导电率数据的解析,对决定了溶解于电解质的锂盐的解离度和离子移动率大小的相互作用力等内容进行预测,并对把它们作为指标的电解质和分离器结构进行设计和提案。 5.探索镁蓄电池结构材料 如果能够把轻便的多价金属且在资源上也较为丰富的镁(Mg)作为负极来利用,就可以制造出储能密度高、成本小且较为安全的电池。但是,把Mg应用于可充放电的蓄电池还在基础研究阶段,处于必须探索开发可充放电的正负极材料和适用于两极的电解液的现状。日本产业技术综合研究所发现了某种作为Mg电池的正极材料可进行可逆反应、且作为蓄电池可在室温下进行操作的有机物,同时研究了适用于此电池的电解液,改善了充放电的效果。 电池技术研究部还进行了关于“使用乙二醇二甲醚类电解液的有机物-镁二次电池的充放电特性”的研究。该项研究首次报告了有机物可以使用在镁二次电池的正极中。该研究团队发现,将该有机正极与金属镁负极、乙二醇二甲醚类镁电解液进行组合后,可以实现室温下约接近2V的放电电压,且能够进行反复的充放电。 6.开发金属多硫化物正极材料(下一代高能量密度蓄电池用电极材料的开发) 目前,能够应用在电动汽车上的、能量密度显著提高的下一代蓄电池的开发备受期待。日本产业技术综合研究所开发了结晶度较低的金属多硫化物材料,并发现这种材料拥有一种新奇的充放电机制,是一种高容量电极材料。 该研究部门开发的新材料与传统材料相比,不仅金属能够进行氧化还原,硫也可以,因此可以飞跃性地提高电池的容量。 7.实际电极中离子传导率、电子传导率测定方法研究 蓄电池、燃料电池、电容器中使用的电极是由电子导体和离子导体(电解质)组成的复合体,电子传导率、离子传导率的测定对提高电池性能、明确电池劣化主要原因非常有效。但是,实际多孔电极中的测定方法还未确立,该电池技术研究部门一直在研究开发各种类型、条件下的测定方法。另外,该部门还根据电池、燃料电池等电化学器件开发企业的要求,进行一些共同研究活动。 目前该部分的主要研究成果如下:利用电化学阻抗进行离子传导率·电子传导率测定;同时测定多孔电极离子传导率·电子传导率的“6端子法”;正确解释电化学阻抗的基础理论和手法。 8.电池内部反应不均现象可视化 该项研究由日本产业技术综合研究所、京都大学、立命馆大学、株式会社KRI共同进行,并于2016年5月23日公布了研究成果。 在该研究中,研究团队为了实现反应不均现象的可视化,使用了可获得二维数据的X射线吸收光谱测定方法。另外,研究团队还确立了在锂离子电池的电极中测量电子传导率、离子传导率的方法。通过在不同性能的锂离子电池电极中使用上述方法进行解析,研究团队最终确定电池内部的反应不均现象是由离子传导所引起的,这一现象会极大地影响电池性能。 该研究成果有助于进行锂离子电池的实用性设计,可以帮助提高电池性能。尤其是在反应不均现象较为明显的大型电池中,该研究成果将适用于汽车用锂离子电池的设计,并有望延长电池的续航距离、提高电池的安全性。 9.在电荷载子中使用分子性离子的新型二次电池 在目前的Li二次电池中,Li+作为电荷载子起作用,因此电池的电压、安全性等都收到Li本质的物性上限制。为此,该研究小组在不使用Li+或Na+的电池中进行了将分析性离子作为电荷载子进行作用的电池实证。 该电池未来备受期待的优点如下: ①比Li更低的电位⇒高电压 ②高离子传导率⇒高输入、高输出 ③没有枝晶(dendrite)⇒高安全性 ④不使用稀有金属⇒低成本
  • 《全球首份BC技术发展白皮书发布 为BC产业化提供科学指引》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-04-28
    • 4月27日,中国电力企业联合会、德国莱茵TüV集团、鉴衡认证中心、爱旭股份、隆基绿能联合于北京发布了《背接触(BC)电池技术发展白皮书》(以下简称《白皮书》)。作为全球首份面向光伏行业和社会公众的BC技术权威报告,《白皮书》系统阐释了BC技术的产业化路径、核心优势与可持续发展潜力,标志着这一“单结硅太阳能电池终极形态”技术正式进入规模化应用新阶段。国务院国资委原行业协会商会工作局局长张涛在致辞中指出,BC技术的突破是我国光伏产业从“跟跑”到“领跑”的重要体现。中国电力企业联合会太阳能发电分会执行会长吴金华在致辞中强调,BC技术将推动光伏行业向更高效率、更低成本方向发展。澳大利亚新南威尔士大学教授马丁·格林通过视频向《白皮书》的发布表示祝贺,他预测未来五年内IBC技术将逐步替代TOPCon技术,同时对中国企业在BC领域的产业化实践及BC技术的未来发展潜力给予高度评价。 德国莱茵TüV集团太阳能服务首席技术专家高祺博士从测试测量与国际认证角度,分析了BC技术的性能参数与可靠性优势,并对相应标准与测试体系进行了解读。鉴衡认证中心太阳能事业部总经理周罡通过实证数据,展示了BC组件产品在实证项目中的卓越表现。爱旭股份首席科学家王永谦从能源变革视角,阐述了光伏技术尤其是BC技术的发展历程及未来愿景。隆基绿能首席科学家、中央研究院副院长徐希翔围绕光伏技术迭代进程,深度剖析了BC技术的工艺创新。 今年,经ISFH认证,BC电池效率再次刷新世界纪录,达到27.81%,距理论极限效率差1.3个百分点。BC电池通过全背交叉电极技术将电池的正负电极全部集成于背面,彻底消除传统电池正面的栅线遮挡,最大化光吸收面积,实现光伏电池设计的范式转移,全面提升光伏电池的转换效率,实现光学和电学性能的双重突破,被业界公认为“单结硅太阳能电池的终极形态”。 圆桌对话环节,隆基绿能创始人、总裁李振国,上海交通大学太阳能研究所所长、教授沈文忠,中国华能集团有限公司原新能源事业部副主任张晓朝,德国莱茵TüV集团太阳能服务首席技术专家高祺博士,鉴衡认证中心太阳能事业部总经理周罡,爱旭股份高级副总裁盛健,三峡集团科学技术研究院副主任专业师刘冬雪就BC技术白皮书发布的意义、BC技术变革核心突破与挑战等议题进行了分享与展望。各方一致认为BC已成为单结硅电池技术高地,BC电池作为单结硅太阳能电池的终极技术已经成熟,势必将引领未来电池技术的创新研究和产业的健康发展。 《白皮书》共分七个章节,对BC技术原理及产业化过程做了深度解析,包括BC技术标准体系与第三方验证、BC技术组件核心性能优势、BC组件应用价值、BC生态构建、未来发展趋势等行业关切问题。值得一提的是,多位全球光伏领域权威专家为《白皮书》作序推荐,包括中国科学院院士、复旦大学教授褚君浩,德国莱茵TüV大中华区太阳能与商用产品服务技术专家、太阳能和研发技术能力中心负责人,Dr. Christos Monokroussos,澳大利亚新南威尔士大学教授、“世界太阳能之父”马丁·格林,上海交通大学太阳能研究所所长沈文忠,长三角太阳能光伏技术创新中心主任沈辉,中国电力企业联合会太阳能发电分会执行会长吴金华,中国华能集团有限公司原新能源事业部副主任张晓朝,隆基绿能总裁、创始人李振国,展现了光伏行业产、学、研各界对BC技术发展的高度关注。 近年来,得益于激光图形化、湿法工艺优化等诸多重大技术突破,BC电池组件生产成本大幅降低,量产效率显著提升,产品综合竞争力快速提升,为其快速进入大规模量产提供了技术和市场基础。此次《白皮书》的发布,以权威数据和技术解析,为行业提供了BC产业化的科学指引。作为晶硅技术的“皇冠上的明珠”,BC技术将推动全球光伏产业迈向更高效率、更低度电成本的新时代,为全球能源转型贡献中国智慧。