《中国科学院海洋研究所揭示生命起源的重要路径》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2023-06-30
  • 近日,中国科学院海洋研究所深海中心孙卫东课题组在生命起源领域取得重要进展。团队利用高温高压实验证明了氮气可以快速参与蛇纹石化过程并生成大量氨气,结合团队前期研究,证明了地球早期在岩浆海后期,蛇纹石化导致地球大气由“二氧化碳+氮气”转变为“氨气+甲烷”,在闪电作用下可以合成大量氨基酸,在超临界水+二氧化碳层形成氨基酸浓汤,是生命起源的关键。相关研究成果发表在学术期刊《科学通报》(Science Bulletin)上。

    生命起源问题是自然科学最重要的科学问题之一,对研究宜居星球和发现地外生命具有重要指导意义。著名的米勒-尤列(Miller-Urey)实验在1953年证明甲烷(CH4)、氨气(NH3)、氢气(H2)和水蒸气在电火花作用下可以产生大量氨基酸,迈出了从无机物到生命所需有机物的第一步。由于氨基酸在生命过程中不可或缺,因此这一反应被认为是生命起源最重要的前置反应之一。然而,传统认为冥古代地球大气主要成分是二氧化碳(CO2)和氮气(N2),缺乏甲烷和氨气。相比于以甲烷和氨气为主的还原性大气,在中性大气里氨基酸合成效率将大大降低,米勒-尤列反应受到限制,氨基酸能否在原始大气中大量合成存在争议。

    针对冥古代地表氨基酸合成缺乏关键原料——氨这一问题,孙卫东课题组进行了蛇纹石化合成氨的高温高压水热实验,研究“橄榄岩-水-氮气(-二氧化碳)”体系在冥古代地表温压条件下的反应,以此证明氮气参与蛇纹石化合成氨过程,进而对生命起源过程中氨的来源提供启示。

    研究结果显示,在250-350 °C和19-28 MPa条件下,橄榄岩与水之间发生蛇纹石化反应产生蛇纹石和氢气(2Fe2+ + 2H2O = 2Fe3+ + H2 + 2OH-),每克橄榄岩对应的产氢量在30天内从0上升至100-200 μmol。进一步地,氮气与蛇纹石化的产物之一的氢气发生合成氨反应(3H2 + N2 = 2NH3)。氨的产量受到温压条件和二氧化碳加入与否的显著影响,在无二氧化碳参与的实验中,250 °C和28 MPa为合成氢气和氨最快的温压条件,而在加入二氧化碳的实验中,氨的转化率得到显著提升。

    该研究充分模拟了冥古代蛇纹石化过程:冥古代地球的地幔尚未发生壳幔分异,超过90%的地表覆盖为橄榄岩;同时在岩浆海阶段的末期,地表温度逐步下降到700 °C以下,有利于蛇纹石化过程发生;此外,冥古代大气含超1000 bar的水蒸气、超110 bar的二氧化碳和约2.6 bar的氮气,与实验的初始原料极为相近。研究证明,在冥古代地表可以广泛发生蛇纹石化合成氨过程,保守估算,该过程每年可以为地表系统提供超过1015g数量级的氨。由于冥古代大气含有超过2.6 bar的氮气,而太古代大气中氮气分压最多不超过1.1 bar,蛇纹石化合成氨过程极有可能是导致原始大气中氮气丢失最重要的原因。

    该研究揭示了蛇纹石化合成氨过程可以在冥古代地表广泛发生并产生大量氢气和氨,从而为氨基酸的合成提供原料。基于研究结果,提出在地表广泛的蛇纹石化作用下,氢气、甲烷和氨大量生成,在闪电作用下形成氨基酸浓汤,为生命起源提供了适宜环境,对于理解早期大气演化和前生物合成反应具有重要意义。

    该研究为中国科学院海洋研究所与南方科技大学合作完成,海洋所深海中心在读博士商修齐和南方科技大学前沿与交叉科学研究院黄瑞芳博士为论文共同第一作者,深海中心孙卫东研究员为通讯作者。该研究得到了中国科学院先导专项、国家自然科学基金等项目资助。

    论文信息:Shang X.Q., Huang R.F., Sun W.D.*, 2023. Formation of ammonia through serpentinization in the Hadean Eon. Science Bulletin. 68 (2023), 1109-1112

    文章链接:https://www.sciencedirect.com/science/article/abs/pii/S209592732300292X

  • 原文来源:http://www.qdio.cas.cn/2019Ver/News/kyjz/202306/t20230620_6784123.html
相关报告
  • 《中国科学院海洋研究所研究揭示西太平洋深层环流路径、流量和变异》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-03-29
    • 近期,中国科学院海洋所王凡研究团队基于长期连续潜标观测,系列研究揭示了西太平洋九州帕劳海脊和新几内亚岛以北深水通道深层环流的路径、流量和变异,进一步完善了对西太平洋深层环流的认知,成果分别发表在国际学术期刊 Geophysical Research Letters 和 Journal of Physical Oceanography。 大洋深层环流路径会受到地形的约束,海盆间的深层水仅能通过一些关键通道进行交换。团队已有研究表明,4000米以深携带绕极下层水的深层流下分支会从雅浦-马里亚纳海沟连接区季节性进入西太平洋,但如何进一步进入菲律宾海盆是未知。基于潜标阵列2.5年的连续观测,研究发现深层流下分支通过连接区北通道进入西马里亚纳海盆,流量为1.41±1.43/0.26 Sv(平均±标准差/误差估计,1 Sv=106 m3s-1),然而可以通过九州帕劳海脊深水通道从西马里亚纳海盆进入北菲律宾海盆,流量为0.75±0.53/0.18 Sv,西马里亚纳海盆侧向流量净通量为0.65±1.35/0.28 Sv,上述两个通道流量以季节内变异为主,流量的平均态和变异受到上层海洋过程的控制。 进入北菲律宾海盆的绕极下层水因地形阻挡无法流出该海盆,只能通过混合吸热上升变为北太平洋深层水,而后通过关键深水通道流出西太平洋。团队基于长达5年的观测研究发现,深层流上分支会在新几内亚岛以北通道向东流出西太平洋,流量为2.19 ± 11.4/1.62 Sv,并呈现显著的季节变化。流量的平均态受通道两端压力差异控制,季节变化由向西向下传播的罗斯贝波控制,均与上层海洋过程紧密联系。需要指出的是,该通道深层流上分支平均流向与前人基于温盐断面结果给出的结论正好相反(Kawabe & Fujio 2010),这一矛盾是由于前人间接观测的不准确或年际变化导致值得进一步研究。 两个研究的新结果丰富了对西太平洋深层环流系统和深层与上层海洋联系的认识,有助于多学科开展生物地球化学要素循环、深层水团性质和变异、气候变化等研究工作。 论文第一作者为中国科学院海洋所研究员汪嘉宁、博士研究生张航,通信作者为研究员王凡、汪嘉宁,合作者包括加拿大贝德福德和美国伍兹霍尔海洋研究所的专家学者等。研究得到了国家自然科学基金委重大研究计划重点项目和优秀青年项目、中国科学院战略性先导科技专项等资助。 相关成果及链接如下: 1. Jianing Wang*, Fan Wang*, Youyu Lu, Hang Zhang, Qiang Ma, Larry J. Pratt, Zhixiang Zhang, Abyssal circulation from the Yap-Mariana Junction to the Northern Philippine Basin, Geophysical Research Letters, 2023, 50(6): e2022GL100610. DOI: 10.1029/2022GL100610. https://doi.org/10.1029/2022GL100610 2. Hang Zhang, Jianing Wang*, Fan Wang, Zhixiang Zhang, Qiang Ma, Observed upper deep branch of the Pacific meridional overturning circulation north of New Guinea, Journal of Physical Oceanography, 2023, DOI: 10.1175/JPO-D-22-0180.1. https://doi.org/10.1175/JPO-D-22-0180.1
  • 《中国科学院海洋研究所研究揭示地幔氧化还原状态演化历史》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-09-13
    • 中国科学院海洋研究所孙卫东课题组张方毅博士等发表最新研究论文,首次将地幔的热状态、氧化还原状态和大气成分演化历史有机关联起来,论证地幔氧逸度长期保持稳定,为进一步深入认识地球多圈层系统的协同演化历史提供了全新视角。成果于8月10日在Nature Communications在线发表。 地幔氧逸度控制地幔中挥发分的赋存形式和活动性,影响幔源岩浆活动中释放的挥发分组成,进而影响大气成分。因此,研究自冥古宙以来地幔氧化还原状态演化历史对认识深部碳循环、大气成分演化以及生命起源等重要科学问题有重要意义。 目前对地幔氧逸度的研究主要通过对幔源熔体的氧逸度研究来实现。然而,由于Fe3+在石榴子石中的稳定性会随着压力的升高而升高,在地幔成分保持不变的情况下,幔源岩浆的氧逸度会随着熔融深度的增加而降低。因此,不同深度起源熔体的氧逸度差异不仅受控于地幔固有氧逸度(Fe3+/ΣFe比值),而且还受控于岩浆的起源深度。 为了直观对比地质历史时期不同起源深度的熔体反映的地幔氧逸度特征,中国科学院海洋研究所与Sapienza University of Rome的研究者进行合作研究,提出了一个全新的参数:“潜能氧逸度”。这一参数参考了经典的“潜能温度”的定义,其代表了地幔在成分保持不变的情况下,假设其不发生熔融减压上升至1GPa时的氧逸度。使用 “潜能氧逸度”这一参数可以直接对比不同深度起源岩浆地幔源区的氧化还原状态,因此可以用来约束地幔氧化还原状态的演化历史。 建立“潜能氧逸度”参数后,研究者们收集整理了全球自3.8Ga以来正常的环境地幔(指未受俯冲带和地幔柱影响的地幔橄榄岩)衍生玄武岩和地幔柱衍生的科马提岩和苦橄岩数据,通过这些数据来约束地幔的氧化还原状态和热状态的长期演化规律。计算结果表明,太古宙岩浆的氧逸度显著低于太古宙之后岩浆的氧逸度。与此同时,岩浆的氧逸度与地幔潜能温度和熔融压力表现出了很好的负相关关系。这一现象指示太古宙时期高地幔潜能温度所造成的部分熔融深度大可能是导致太古宙岩浆氧逸度偏低的原因。在将所有幔源岩浆的氧逸度校正至“潜能氧逸度”之后发现,无论是环境地幔还是地幔柱源区(下地幔)的氧逸度自冥古宙以来均保持不变,而造成幔源岩浆氧逸度变化的原因则是地幔熔融深度和程度的变化。 研究成果以“The constant oxidation state of Earth’s mantle since the Hadean”为题发表于国际学术期刊Nature Communications,中国科学院海洋研究所博士后张方毅为第一作者,孙卫东研究员为通讯作者,共同作者包括意大利罗马大学Vincenzo Stagno副教授和中国科学院海洋研究所张丽鹏副研究员、陈晨博士、刘海洋副研究员和李聪颖副研究员。 原文链接:https://www.nature.com/articles/s41467-024-50778-z