《化学之谜揭晓:研究人员发现了分子不寻常的细胞杀伤机制》

  • 来源专题:人类遗传资源和特殊生物资源流失
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2020-04-07
  • 2015年,杰克•伊顿(Jake Eaton)加入麻省理工学院(MIT)布罗德研究所(Broad Institute of MIT)和哈佛大学(Harvard)斯图尔特•施赖伯(Stuart Schreiber)的实验室后不久,这位博士后研究员就对同事们正在辩论的一些疯狂理论产生了兴趣。这些理论集中在一种被称为ML210的奇怪小分子上,它可以通过启动一种叫做铁作用的细胞过程来杀死细胞。Schreiber实验室的博士后Vasanthi Viswanathan发现,诱导上铁作用可以杀死一些耐药癌细胞。Eaton、Viswanathan和Schreiber认为,理解ML210如何触发这一过程,可以为如何开发治疗对现有疗法产生耐药性的癌症的药物,或在一开始就预防耐药性打开秘密。

    伊顿和他的同事们知道,ML210通过抑制GPX4(一种保护细胞免受氧化应激的蛋白质)来诱导铁中毒。他们推测这是通过与蛋白质形成一种特殊的化学连接,称为共价键来实现的。问题是,ML210的化学结构没有明显的方式来形成共价键,这导致持怀疑态度的科学家对它如何能够与GPX4结合产生了一些牵强的猜测。

    “我们想知道,‘它是否以一种不同的方式绑定GPX4 ?它是作用在GPX4通路的其他节点上,还是在做一些全新的事情?”,”伊顿说。“这是一个真正的化学之谜。”

    现在,经过多年的研究,布罗德研究所的科学家们与拜耳公司的科学家们合作,已经解决了这个化学难题。在《自然化学生物学》的一项研究中,他们发现ML210在细胞内转变成一个新分子,这个新分子又转变成第三个分子,然后与GPX4共价结合。他们揭示的机制是极其不寻常的,并证明了一种未被认可的方式,即像ML210这样的“前药物”可以转化为分子,使其能够与细胞内的靶蛋白共价结合。

    在这项研究中,科学家们描述了一组新的化合物,他们可以利用这些化合物来进一步了解细胞是如何进行上铁作用的。上铁作用是10年前才发现的一个过程。此外,这些分子是开发化合物的起点,这些化合物不仅可以在培养皿中抑制GPX4并杀死耐药癌细胞,还可能用于动物模型甚至病人。

    “我记得我说过,‘恐怕我要把这个ML210的秘密带进坟墓’,”合著者施赖伯说。施赖伯是布罗德研究所的联合创始人和核心成员,也是哈佛大学化学和化学生物学系的莫里斯·勒布教授。就像剥洋葱的许多层一样,杰克一步一步地揭示了细胞赋予ML210的迷人的化学反应序列,这在有机化学中几乎没有先例。这是杰克出色的分子侦查工作。”

    绑定之谜

    近10年前,曾在施赖伯实验室学习的现为哥伦比亚大学教授的布伦特•斯托克韦尔首次正式描述了上铁血症。在上铁作用中,细胞膜上的脂质分子被氧化,导致一种叫做脂质过氧化物的有毒分子积聚,最终杀死细胞。GPX4通过将脂质过氧化物转化为无毒化合物来保护细胞免受这种死亡。

    维斯瓦纳坦是从斯托克韦尔实验室移植到施赖伯实验室的,他推断一种能破坏GPX4的分子可能会成为一种新型抗癌药物的灵感来源。然而,GPX4是一个具有挑战性的目标,因为它平坦、无特征的化学结构没有明显的药物结合部位。

    2010年,一个小分子发现努力叫做分子图书馆调查生产中心网络,广泛的研究所的部分,发现了一些化合物结合GPX4和诱导ferroptosis——其中两个属于一个类的分子称为氯乙酰氨,共价结合GPX4。但这些化合物不适合用于药物开发或动物研究,因为它们具有高度的活性,会破坏许多其他蛋白质,导致意想不到的副作用。它们也不太可能在体内停留足够长的时间来结合和阻止GPX4。

    2010年筛选的第三种化合物是ML210,这是一种“离群化合物”,在化学性质上与氯乙酰氨基化合物不同。Eaton和Viswanathan研究了来自癌症治疗反应门户网站的ML210数据,该网站是由Broad的研究人员开发的数据库,部分由国家癌症研究所(National Cancer Institute)赞助。从数据上看,ML210通过与GPX4形成共价键,与氯乙酰氨基类似。令研究人员感到困惑的是,ML210不包含“共价弹头”,这是一种关键的化学结构,可以让它以这种方式与GPX4配对。

    前所未有的机器

    为了探究ML210是如何抑制GPX4的,该团队需要更好的方法来在实验室中研究GPX4。他们与拜耳的同事开发了一种系统,可以在哺乳动物细胞中过度表达GPX4蛋白,并制作了一些实验来研究分子与GPX4之间的相互作用。

    伊顿说:“这种特殊的产学研合作的一大好处就是克服了我们在这项研究中遇到的一些问题。”“我不认为我们凭一己之力就能克服这些挑战。”

    分析证实,ML210实际上是通过共价结合抑制GPX4的,而且其抑制作用比两种氯乙酰氨基化合物要精确得多。

    这一暗示导致伊顿进一步的化学探测工作,揭示了ML210在细胞中经历了一些不寻常的化学转变,以获得结合和抑制GPX4的能力。ML210首先被转化成一个化合物,该团队将其命名为JKE-1674。细胞将这种化合物转化成另一种不同寻常的分子JKE-1777,这种分子能够与GPX4共价结合。

    尽管JKE-1777在细胞外是不稳定的,但该团队合成的JKE-1674和相关化合物对GPX4是稳定的和选择性的,比ML210更适合用于动物模型,甚至病人。

    前所未有的机器

    在《美国化学学会杂志》的一篇相关论文中,研究人员描述了另一组化合物diacylfuroxans,它也能共价抑制GPX4。虽然这些化合物的选择性不如ML210或JKE-1674,也不太可能有治疗作用,但这项联合研究帮助科学家理解了ML210研究中的新发现。

    “这些化合物是化学生物学历史上前所未有的分子机器,因为它们具有不同寻常的多层化学特征,而这些特征是它们的特性的基础,”Schreiber实验室的博士后助理Vasanthi Viswanathan说。

    还有更多的工作要做,以确定是什么细胞过程引导ML210转化为其活性形式,以及这些分子是否可以用于动物模型,甚至用于人类作为治疗化合物。

    如果这些分子或它们的变体被证明是有希望的新疗法,它们可能会产生一种新的药物,有一天可以帮助对抗耐药肿瘤。

相关报告
  • 《研究人员发现新药物家族的新成员为“不可用药”的目标》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2020-06-09
    • 在过去的几年里,一种很有前途的药物引起了人们的兴奋,这种药物不像大多数传统药物那样通过抑制分子靶点的作用,而是通过利用细胞的循环系统来摧毁靶点。然而,这些不寻常的化合物,被称为分子胶降解剂,一直很难找到和设计。 现在,由麻省理工学院、哈佛大学博德研究所和瑞士巴塞尔的弗里德里希·米舍尔生物医学研究所的科学家领导的一个研究小组发现了一种名为CR8的新型分子胶降解器。正如发表在《自然》杂志上的一篇论文所描述的那样,通过详细分析CR8的分子作用机制,研究人员展示了如何可能构建更多这种独特的化合物,作为多种疾病的潜在治疗手段。 “我们已经表明,可以采取传统的激酶抑制剂,通过附加一个特定的化工集团,把它转变成一个分子胶水下降,”文章的第二作者本杰明•艾伯特说,协会成员广泛的癌症项目和部门的主席医学肿瘤学丹纳-法伯癌症研究中心的研究。“这为制造分子胶降解剂提供了潜力,其应用范围比我们最初预期的要广得多。” 把锁和钥匙扔掉 大多数药物使用一种锁定-钥匙的方法来靶向蛋白质,通常是酶,通过直接结合靶蛋白的不同凹槽来阻断其活性。然而,许多其他种类的蛋白质,如转录因子,缺乏这样的结合位点,这阻碍了针对这些传统上“不能用药”的靶点设计药物的努力。 大约六年前,Ebert和他的同事们发现了一种著名的多发性骨髓瘤药物——来那度胺,可以作为分子胶降解剂。它不是直接与目标结合,而是通过招募分子机器,标记目标蛋白质以破坏细胞,从而更隐蔽地运作。这台机器被称为E3泛素连接酶,它将一种叫做泛素的小蛋白质连接到命中注定的目标上,然后被细胞的循环系统降解。 识别更多的分子胶水下降,艾伯特的团队,由co-first作者Mikolaj Slabicki,博士后研究员广泛和德国海德堡癌症研究中心研究数据超过4500药物和化合物广泛的药物再利用中心,一组化合物已被证明是安全的在人类中,包括许多fda批准。科学家们梳理了这些公开的数据,找出了能够优先杀死高E3泛素连接酶水平的癌细胞的药物。 斯拉比基说:“我们一直在实验室里进行头脑风暴,想办法找到更多的分子胶降解剂。”“我们非常幸运能够访问到如此庞大、健壮的数据集。如果没有Broad Cancer项目生成的数据集,我们就不会有这个发现。” 一条创造更多的道路 CR8是一种化合物,最初设计用来抑制称为周期蛋白依赖性激酶(CDKs)的酶,CDKs在控制细胞生长中发挥重要作用。研究人员利用生物信息学方法发现CR8的细胞杀伤活性与E3泛素连接酶复合物DDB1的水平相关。 研究小组发现CR8通过诱导细胞周期蛋白K的降解来杀死癌细胞,细胞周期蛋白K是一些CDKs,特别是CDK12的结合伙伴。CR8的作用类似于分子胶,结合CDK12-cyclin K,招募DDB1以及随后E3泛素连接酶复合体的其他部分,从而标记cyclin K进行降解。 来自弗里德里希米舍尔研究所的合作者,包括联合高级作者Nicolas Thoma和联合第一作者Zuzanna Kozicka和Georg Petzold,解决了这个cr8诱导的蛋白质复合物关键成分的晶体结构,揭示了所有粘合在一起的部分之间相互作用的新的分子细节。 波士顿和巴塞尔团队观察了一种结构类似于CR8的药物的活性,发现它不会导致细胞周期蛋白K的降解。这两种化合物在结构上的唯一区别是突出的一个被称为吡啶取代基的化学部分。研究小组得出结论,这一部分足以使CR8发挥分子胶降解器的作用。这一发现表明,抑制剂外表面部分的化学修饰可以将其转化为特定蛋白靶点的分子胶降解剂。 “我们的研究结果表明,我们可以自己设计这些化合物,”艾伯特说。“也有可能已经存在许多其他的分子胶降解剂,但还没有被发现,因为他们的目标的稳定性还没有被检查。这真的是令人兴奋的。”
  • 《研究揭示调控iNKT细胞分化终末成熟的分子机制》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-01-10
    • 9月24日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院生物化学与细胞生物学研究所刘小龙研究组的最新研究成果“Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23”,首次揭示了调控iNKT细胞分化终末成熟的分子机制。   iNKT细胞是一类特殊的T细胞亚群,表达特定的T细胞受体(TCR)和NK细胞表面受体(NK1.1)。iNKT细胞不同于经典的T细胞,能够识别MHC-I分子类似物CD1d分子递呈的糖脂类抗原,在抗原刺激后,能够迅速分泌一系列细胞因子,从而激活其他免疫细胞,在生理病理过程中发挥重要作用。大部分iNKT细胞由双阳性胸腺细胞(CD4+CD8+)分化而来, 其分化成熟过程分为四个阶段(阶段0-阶段3)。阶段0到阶段1,iNKT细胞进入快速增殖期;阶段1到阶段2上调CD44表达,获得效应记忆性;阶段2到阶段3,上调NK1.1表达,成为功能成熟的iNKT细胞。其中阶段2到阶段3是iNKT细胞分化的最后阶段,对于建立iNKT细胞特定的免疫功能十分关键,然而调控该分化阶段的分子机制一直不清楚。   刘小龙研究组的工作揭示,在小鼠T细胞中特异敲除转录中介体亚基Med23后,iNKT细胞的分化完全停滞在阶段2,这为研究iNKT细胞终末分化成熟提供全新模型。对野生型阶段2和阶段3的iNKT细胞转录组进行比较,发现阶段2和阶段3的iNKT细胞具有不同的转录调控以及免疫功能相关基因的表达。进一步的功能分析表明,相较于阶段2的细胞,阶段3的iNKT细胞不仅可以上调一系列NK细胞相关的表面受体;在受到抗原刺激后,还具有快速分泌细胞因子和趋化因子的能力。然而,Med23缺失的iNKT细胞功能受损,甚至不能达到野生型阶段2的iNKT细胞的功能水平,表现出抗原应答不敏感,丧失免疫细胞招募能力,最终导致iNKT细胞清除肿瘤的能力受损。他们的研究还进一步揭示,在Med23缺失的iNKT细胞中过表达AP-1家族转录因子c-Jun能够部分拯救iNKT细胞的分化缺陷。该研究深入探讨了iNKT细胞从阶段2到阶段3过程中免疫功能建立的机理,揭示了Med23调控iNKT细胞分化终末成熟的作用与机制。   在读博士生徐昱为论文的第一作者,研究员刘小龙为通讯作者。该研究得到研究员吴立刚及其学生李荣红、张宏道在转录组测序方面的大力帮助。该研究得到国家自然科学基金、中国科学院先导专项、中国科学院青年创新促进会和中国博士后科学基金的经费资助,同时获生化与细胞所公共技术服务中心动物实验技术平台、细胞生物学技术平台的技术支持。