《Optimization-based planning of a biomass to hydrogen (B2H2) system using dedicated energy crops and waste biomass》

  • 来源专题:生物质生化转化信息监测
  • 编译者: giecinfo
  • 发布时间:2016-03-14
  • The utilization of biomass for hydrogen production is one of the promising options for a sustainable energy system. In this paper, we develop a new optimization-based approach for design and analysis of the B2H2 system including production, storage, and distribution using dedicated energy crops as well as various resources of waste biomass. To achieve this goal, we first develop an optimization model using mixed-integer linear programming technique that includes practical variables and constraints for decision-making about the usage of dedicated energy crops. We then conduct a case study of the B2H2 system for the road transportation sector of future Korea. As a result, we identify an optimal system configuration that includes the utilized biomass types, occupied land sizes, the number and location of facilities, and the biomass and hydrogen flows between regions. We also analyze the cost distributions and the sensitivity of the main cost drivers on the total annual cost (TAC). The results reveal that the proposed B2H2 system is economically competitive with some of the other renewable-based hydrogen supply systems (wind and solar) in Korea.

相关报告
  • 《Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities》

    • 来源专题:生物质生化转化信息监测
    • 编译者:giecinfo
    • 发布时间:2016-03-24
    • Autothermal Chemical-Looping Reforming (a-CLR) is a process which allows hydrogen production avoiding the environmental penalty of CO2 emission typically produced in other processes. The major advantage of this technology is that the heat needed for syngas production is generated by the process itself. The heat necessary for the endothermic reactions is supplied by a Ni-based oxygen-carrier (OC) circulating between two reactors: the air reactor (AR), where the OC is oxidized by air, and the fuel reactor (FR), where the fuel is converted to syngas. Other important advantage is that this process also allows the production of pure N2 in the AR outlet stream. A renewable fuel such as bioethanol was chosen in this work due to their increasing worldwide production and the current excess of this fuel presented by different countries. In this work, mass and heat balances were done to determine the auto-thermal conditions that maximize H2 production, assuming that the product gas was in thermodynamic equilibrium. Three different types of bioethanol has been considered according to their ethanol purity; Dehydrated ethanol (≈100 vol.%), hydrated ethanol (≈96 vol.%), and diluted ethanol (≈52 vol.%). It has been observed that the higher H2 production (4.62 mol of H2 per mol of EtOH) has been obtained with the use of diluted ethanol and the surplus energy needed could be compensated by the energy save achieved during the purification of ethanol in the production process.
  • 《Comparative net energy ratio analysis of pellet produced from steam pretreated biomass from agricultural residues and energy crops》

    • 来源专题:广州能源研究所信息监测
    • 编译者:giecinfo
    • 发布时间:2016-04-07
    • A process model was developed to determine the net energy ratio (NER) for the production of pellets from steam pretreated agricultural residue (wheat straw) and energy crops (i.e., switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated wheat straw and switchgrass pellets. The NERs for the base case at 6 kg h−1 are 1.76 and 1.37 for steam-pretreated wheat straw and switchgrass-based pellets, respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than wheat straw pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 °C with 50% pretreatment (i.e. 50 % steam treated material is blended with the raw biomass and then pelletised). The uncertainty results for NER for steam pretreated wheat straw and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.