《西安光机所在空间激光通信捕获建链研究方面获进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-11-15
  • 近日,中国科学院空间精密测量技术重点实验室在空间激光通信捕获建链方面取得新进展并顺利完成在轨验证,相关研究成果以On-orbit Space Optical Communication Demonstration with 22s Acquisition Time为题,于2023年11月发表于美国光学学会期刊《Optics Letters》。论文共同第一作者为光电跟踪室特别研究助理王轩和韩俊锋研究员,通讯作者为常志远。

    空间激光链路组网是实现空间激光通信的基本条件,如何在短时间内快速、稳定地捕获建链是组网成功的关键,所以实现快速、大范围光束捕获和稳定的高带宽、高精度光束跟踪成为了核心技术热点。一般情况下,激光通信终端进入轨道初期通常需要花费大量时间完成同轴度在轨标校工作。卫星平台的姿态确定误差、轨道误差、环境变化引发的结构变形等原因会导致较大的不确定场(FOU),从而增加捕获难度,数十微弧度的光束发散角则使得在轨的双向捕获变得极为棘手。

    为了更快地完成在轨激光通信链路捕获,研究团队提出一种利用激光通信终端星敏感器的安装矩阵参数在轨快速寻优方法。这种方法可以有效减小激光通信终端光轴和精密调节机构的安装位置由于卫星入轨应力释放带来的误差。巧妙地通过校正安装矩阵参数从而大幅度提升激光通信终端初始指向精度、减小不确定场范围,从而提升激光通信终端在轨扫描捕获概率,减少捕获时间。

    图1:同轨星间激光通信试验示意图

    图2 在轨捕获建链实验结果

相关报告
  • 《中国首个业务化运行激光通信地面站建成 实现全链条星地激光通信》

    • 来源专题:光电信息技术
    • 编译者:王靖娴
    • 发布时间:2024-09-25
    • 【内容概述】据激光之家9月19日报道,中国科学院空天信息创新研究院(空天院)自主研制成功的500毫米口径激光通信地面系统,9月15日在新疆帕米尔高原慕士塔格峰区域一处海拔4800米山顶完成部署,标志着中国首个业务化运行的星地激光通信地面站正式建成,并进入常态化运行阶段。该地面站的建成打通了星地激光通信全链条业务流程,将进一步推进星地激光通信的工程化应用,改变中国目前卫星数据接收仅靠微波地面站的现状。   中国科学院空天院高级工程师李亚林介绍说,星地激光通信以激光为载体,可实现卫星与地面之间的高速信息传输,是未来星地高速通信的重要手段。区别于传统的微波通信,星地激光通信的优势在于可用频谱资源极其丰富、带宽可达数太赫兹(THz),相较于微波通信提高了十倍到近千倍。如果将频段比作道路,那么微波X频段是“单车道”,微波Ka频段是“四车道”,而激光可容纳成百甚至上千“车道”。此外,激光通信系统重量轻、体积小、功耗低、保密性强,能够满足星地海量数据传输需求。 【背景介绍】建设过程中,中国科学院空天院项目团队先后突破大气信道预测及任务规划调度、激光信号的快速捕获建链和自适应光学校正、复杂大气条件下的无误码传输等一系列关键技术,实现夜间星地激光通信的常态化运行。近期,项目团队又攻克了白天强大气湍流、强背景光下的可靠星地激光通信难题,首次成功完成白天星地激光通信试验。这项工作将星地激光通信的可用时段提高了近一倍,进一步支撑了星地激光通信地面站的业务化运行。
  • 《突破 | 西安光机所在超短激光脉冲放大技术研究方面取得系列进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-05-06
    • 近一年,西安光机所光子制造系统与应用研究中心持续在高功率大能量超短激光脉冲放大技术研究方面进行攻关,取得系列进展。 1.开发出高阶色散补偿的宽带大色散啁啾脉冲放大技术,解决了高能超短脉冲放大过程中的高阶色散失配问题,有效地提升了压缩脉冲的信噪比和脉冲宽度,实现了小于300飞秒的大能量(148 微焦)飞秒激光输出,相关研究成果发表于Optics and Laser Technology期刊,论文第一作者和通讯作者为李峰副研究员。 2.以上述成果为基础,在高重复频率下实现了更高功率飞秒激光输出,在2兆赫兹重复频率下,探索出新型锥形大模场光纤在高功率超短脉冲放大中的应用,实现了70.6瓦、266飞秒的高功率超短脉冲输出,相关研究成果发表于Optics Express期刊,论文第一作者为博士生曹雪,通讯作者为李峰副研究员、王屹山研究员。 3.在1兆赫兹重复频率下,基于特种玻璃光纤混合一级的单晶光纤放大器,已经实现了大于100瓦的飞秒激光输出,相关研究成果发表于Laser Physics Letters,论文第一作者为博士生李强龙,通讯作者为李峰副研究员。 近日,光子制造系统与应用研究中心在高能量超短激光脉冲放大技术研究方面再次取得重要进展。研究团队采用特种玻璃光纤级联单晶光纤的混合式放大技术,实现了100千赫兹重频下近毫焦级能量的超短脉冲放大输出,最大放大输出功率92.9瓦,对应单脉冲能量达929微焦,通过基于温度梯度的宽带大色散啁啾光纤光栅和高衍射效率光栅对压缩器进行精密的色散匹配,将中心波长1030纳米,谱宽仅2.4纳米的超短脉冲压缩至335飞秒(洛伦兹拟合的傅里叶转换极限脉冲宽度325飞秒),压缩后输出脉冲能量达800微焦,对应峰值功率大于2.38吉瓦,是目前基于单晶光纤在百千赫兹重复频率下获得的最大峰值功率的超短脉冲输出,对输出的激光光束质量进行测试,光束质量因子(M2)优于1.3。 该项研究工作获得了国家自然科学基金重大项目课题、中国科学院西部青年学者项目、陕西省两链融合专项、中国科学院弘光专项、陕西省科技新星等项目支持。研究成果可为阿秒科学与技术研究、超快激光加工等领域提供新型高效光源技术手段。 图1 压缩输出的脉冲宽度测量 图2 高功率输出的光束质量测量