《突破 | 西安光机所在超短激光脉冲放大技术研究方面取得系列进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-05-06
  • 近一年,西安光机所光子制造系统与应用研究中心持续在高功率大能量超短激光脉冲放大技术研究方面进行攻关,取得系列进展。

    1.开发出高阶色散补偿的宽带大色散啁啾脉冲放大技术,解决了高能超短脉冲放大过程中的高阶色散失配问题,有效地提升了压缩脉冲的信噪比和脉冲宽度,实现了小于300飞秒的大能量(148 微焦)飞秒激光输出,相关研究成果发表于Optics and Laser Technology期刊,论文第一作者和通讯作者为李峰副研究员。

    2.以上述成果为基础,在高重复频率下实现了更高功率飞秒激光输出,在2兆赫兹重复频率下,探索出新型锥形大模场光纤在高功率超短脉冲放大中的应用,实现了70.6瓦、266飞秒的高功率超短脉冲输出,相关研究成果发表于Optics Express期刊,论文第一作者为博士生曹雪,通讯作者为李峰副研究员、王屹山研究员。

    3.在1兆赫兹重复频率下,基于特种玻璃光纤混合一级的单晶光纤放大器,已经实现了大于100瓦的飞秒激光输出,相关研究成果发表于Laser Physics Letters,论文第一作者为博士生李强龙,通讯作者为李峰副研究员。

    近日,光子制造系统与应用研究中心在高能量超短激光脉冲放大技术研究方面再次取得重要进展。研究团队采用特种玻璃光纤级联单晶光纤的混合式放大技术,实现了100千赫兹重频下近毫焦级能量的超短脉冲放大输出,最大放大输出功率92.9瓦,对应单脉冲能量达929微焦,通过基于温度梯度的宽带大色散啁啾光纤光栅和高衍射效率光栅对压缩器进行精密的色散匹配,将中心波长1030纳米,谱宽仅2.4纳米的超短脉冲压缩至335飞秒(洛伦兹拟合的傅里叶转换极限脉冲宽度325飞秒),压缩后输出脉冲能量达800微焦,对应峰值功率大于2.38吉瓦,是目前基于单晶光纤在百千赫兹重复频率下获得的最大峰值功率的超短脉冲输出,对输出的激光光束质量进行测试,光束质量因子(M2)优于1.3。

    该项研究工作获得了国家自然科学基金重大项目课题、中国科学院西部青年学者项目、陕西省两链融合专项、中国科学院弘光专项、陕西省科技新星等项目支持。研究成果可为阿秒科学与技术研究、超快激光加工等领域提供新型高效光源技术手段。

    图1 压缩输出的脉冲宽度测量

    图2 高功率输出的光束质量测量

相关报告
  • 《突破 | 西安光机所在超短激光脉冲光场测量研究方面取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-24
    • 近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。 超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。 而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。 未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。 图1 实验装置示意图 图2 可见波段周期量级脉冲测量结果 图3中红外波段周期量级脉冲测量结果
  • 《突破 | 上海光机所在多波长同步皮秒光纤激光器方面取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-07-30
    • 近期,中国科学院上海光学精密机械研究所空天激光技术与系统部周佳琦研究员团队,在多波长同步皮秒光纤激光器方面取得进展。 重复频率同步的多波长超快激光在拉曼散射光谱、泵浦探测、相干光合成和差频产生等方面具有重要应用。目前在光纤激光器中产生同步多波长超快激光脉冲的方法主要包括锁模技术和非线性频率变换技术。锁模技术主要基于谐振腔结构,不同波长激光器腔长失配量被限制在厘米量级。基于自相位调制和超连续谱的非线性频率变换技术直接产生的目标波长脉冲能量较低,需要额外稀土掺杂光纤放大器进行放大,工作波长受限于稀土离子发射谱范围。 研究团队基于单频种子注入的级联拉曼光纤放大器,利用增益开关二极管泵浦,可以产生重复频率连续可调的多波长同步高能量皮秒激光(图1)。在实验中,以增益开关二极管作为泵浦源,单频连续激光作为种子源,利用级联受激拉曼散射效应,可以分别产生以1065 nm、1121 nm和1178 nm为中心的同步多波长皮秒脉冲。单频种子注入的拉曼光纤放大器无需复杂的腔长匹配,而且可以实现重频的灵活调节。利用增益开关二极管作为泵浦源,同步多波长脉冲的重频调节范围可达20 MHz~50 MHz(图2)。该技术为产生重复频率连续可调的同步多波长皮秒脉冲提供了新的途径,有望成为拉曼散射光谱、泵浦探测、相干光合成和差频产生等应用的理想光源。 图1 实验装置示意图 图2 不同重复频率下的光谱演化