《铝的掺入对CrN薄膜界面的导电性和耐腐蚀性对316L不锈钢用作质子交换膜燃料电池双极板的影响》

  • 来源专题:可再生能源
  • 编译者: 董璐
  • 发布时间:2015-08-04
  • 双极板的界面导电性和耐腐蚀性是影响质子交换膜燃料电池性能和耐久性的重要参数。本研究设计来探讨的影响铝的掺入对CrN薄膜界面电导率和腐蚀性能双极板,其方式是通过改变铝靶磁控溅射电流调节铝含量。扫描电子显微镜(扫描电镜)结果表明,沉积的薄膜是具有致密性和连续性的。界面接触电阻(ICR)之间气体扩散层(GDL)掺杂薄膜中铝含量增加,以及最低的ICR值是5.1MΩcm2at.4兆帕。电化学腐蚀试验和电感耦合等离子体质谱(ICP-MS)检测透露,铝的掺杂CrN薄膜可以在实际PEMFC环境下,形成致密的钝化膜,以及提高双极板的耐久性,降低金属离子膜污染。

相关报告
  • 《双极板在质子交换膜燃料电池中的应用研究以及316奥氏体不锈钢的等离子表面共渗现象》

    • 来源专题:可再生能源
    • 编译者:董璐
    • 发布时间:2015-07-28
    • 奥氏不锈钢是质子交换膜燃料电池双极板中一种很有前途的候选材料。然而,它的界面接触电阻率约为能源部(DOE)目标(10米Ωcm2)的16倍,导致燃料电池性能较差。在这项工作中,一新型混合等离子体表面工程中,已经开发了基于活性离子的Co合金,同时对奥氏体不锈钢(316 SS)表面覆盖氮和铌。结果表明,改性表面层结构可以对处理条件进行调整。所有的等离子体处理的不锈钢样品表现出性能显著降低至ICR 10 m以下。
  • 《这张膜将改变燃料电池》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-03-18
    • 近日,张生与英国曼彻斯特大学诺贝尔物理学奖得主安德烈·海姆爵士等人合作,证实了石墨烯、氮化硼等二维材料具有质子传导性,并进一步发现,把自然界中广泛存在的云母用于燃料电池的高温质子交换膜,比目前商用膜性能更优、更节能环保。这两项研究成果分别发表在世界顶级学术期刊《自然·纳米》与《自然·通讯》上。 自小与“电”结下不解之缘 “我从本科到博士一直读的都是电化学专业,回想起来,我从小就对电特别好奇。”回忆起和电化学结缘,张生娓娓道来。中学时,张生最喜欢的化学实验就是拆开收音机用过的旧电池,把二氧化锰和锌做的电极插入碱性溶液中,就会产生电,让小灯泡亮起来。“现在想来,干电池就是最简单的电化学原理的应用,即将化学能转化为电能,专业术语叫作‘原电池’。” 2005年读研究生时,张生第一次接触到了燃料电池,自此一干就是十几年。“燃料电池是一种很棒的清洁能源技术,不受热力学循环限制,能量转换效率极高,而且燃料电池发电过程的产物只有水,没有碳排放,非常环保。”张生感慨地说,“但当时我国燃料电池研究才刚起步,研发出来的燃料电池成本高,很难实现商业化。” 张生读博士的时候,主要的研究方向就是降低燃料电池成本。他和所在的团队通过碳改性,增加廉价金属用量,达到了和用昂贵的铂金催化剂做电极一样的效果,电极成本极大降低。 在燃料电池中,质子传导性能对于燃料电池能量转化效率非常关键。“当时只有全氟磺酸膜,技术垄断价格高而且不耐高温。燃料电池需要的质子传导膜既要非常薄,还要像一张‘网’一样,孔洞大小只能让质子快速通过且能阻挡反应物氢气的渗透。但当时由于我的知识局限性,还不足以攻克这个难题。”张生解释道。 带着这个遗憾,张生去了美国进行博士后研究,主攻方向是温室二氧化碳的电化学转化利用。在国外学习工作期间,他接触到了更多的材料学、化学、物理等方面的知识,这些新知识拓展了他的视野,但寻找性能更优良的质子传导膜这个难题始终让他念念不忘。 破解提升燃料电池性能难题 张生的执着让他的人生轨迹再次与燃料电池产生交集,优异的研究成果使张生获得欧盟杰出人才计划资助,到英国曼彻斯特大学工作,专心进行质子交换膜的难题研究。 “寻找能够做‘网’的二维材料这件事,说起来容易,但研究过程也是一波三折。”张生说,根据各种文献和之前的研究,他们找到了石墨烯这种二维材料,本以为找到了一张合适的“网”,但事实证明,这条路才刚刚开始。石墨烯材料是由碳的六元环结构组成的,十分不稳定,需要以铜片为基底才能稳定成石墨烯膜。但是铜不能让质子通过,因此还需要把稳定的石墨烯从铜片上转移下来。 “整整半年时间,我们实验了热压、冷压等二十多种方法,但由于界面作用没那么强,转移过程中石墨烯膜都破损严重。”回忆起当时的情形,张生至今难忘,“我当时的心情,和曼彻斯特的冬天一样,见不到阳光。”通过总结失败的方案,张生调整思路,最终找到一种胶增加了界面强度,实现了石墨烯膜的完美转移。 然而石墨烯膜并没有解决耐高温的问题,回国后,张生又找到和石墨烯结构相近一些材料,但都存在各种问题。直到云母材料的出现,让张生如获至宝。“云母在地壳中储量极其丰富且价格低廉,使用云母制备的云母质子膜可以满足各种条件,而且使用温度可以从100℃延伸到500℃。”张生介绍说,云母膜质子传导率超过了目前商业化要求的两倍,应用于燃料电池后,未来电动汽车的行驶里程将会有很大提高。 “我们发展燃料电池这一清洁能源技术的初衷之一是减少碳排放,而更好地减少碳排放的办法是把二氧化碳变废为宝。”依托天津大学化学学院绿色合成与转化教育部重点实验室,张生通过反向利用燃料电池的能量转化原理,通过电能打开二氧化碳的碳氧分子键,加入氢将二氧化碳有选择性地转化为甲酸、乙烯和乙醇等有用的物质。 “虽然这项研究难度很大,但是做科研需要迎难而上的精神,我相信通过努力,我们的团队一定能开发出通过电化学途径转化二氧化碳这样一种清洁能源技术。”面对未来,张生充满信心。