《功率半导体持续进化:碳化硅材料快速增长,汽车缺芯问题存在误解》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-04-20
  • 功率半导体是电子装置中电能转换与电路控制的核心,通过利用半导体的单向导电性实现电源开关和电力转换。大部分情况下,电能往往无法直接使用,需由功率半导体器件进行功率变换以后才能供设备使用。
    目前,国内生产功率半导体的企业包括士兰微(600460.SH)和斯达半导(603290.SH)等。士兰微董事会秘书办人士于4月14日告诉记者,从普通的家电到高铁都会用到功率半导体,不同产品应用的功率范围不一样。目前功率半导体的主要发展趋势之一是耐压越来越大。
    斯达半导在4月9日发布的2021年年报中表示,随着世界各国对节能减排的需求越来越迫切,功率半导体器件已从传统的工业控制和4C(通信、计算机、消费电子、汽车)领域迈向新能源、新能源汽车、轨道交通、智能电网、变频家电等诸多产业。功率半导体的发展使得变频设备广泛的应用于日常的消费,促进了清洁能源、电力终端消费、以及终端消费电子的产品发展。
    近年来,汽车产业频频传出“缺芯”的问题。而上述士兰微人士认为,汽车“缺芯”的问题存在误解。某些环节的芯片在某些时候会出现短暂的供不应求,不过这个问题被放大了。
    士兰微2021年年报信息显示,该公司2021年营业收入为71.94亿元,同比增长68.07%;归属于上市公司股东的净利润为15.18亿元,同比增长2145.25%。而根据斯达半导的年报,该公司2021年营业收入约为17.07亿元,同比增长77.22%;归属于上市公司股东的净3.98亿元,同比增长120.49%。
    IGBT成为代表性产品碳化硅材料快速增长
    上述士兰微人士告诉记者,功率半导体的功能可以理解为主要用于调节电压电流。功率半导体应用于不同的电子器件,包括从普通的家电到高铁等。不同器件的功率范围不一样,而应用于家电的和用于高铁的属于不同的级别。
    斯达半导也在年报中介绍称,功率半导体主要用于电力设备的电能变换和电路控制,是进行电能处理的核心器件,是弱电控制与强电运行间的桥梁,细分产品主要有MOSFET、IGBT、BJT等。(MOSFET:金属氧化层半导体场效晶体管,是高输入阻抗、电压控制器件;BJT:双极型晶体管,是低输入阻抗、电流控制器件;IGBT:绝缘栅双极型晶体管,是由BJT和MOSFET组成的复合全控型电压驱动式功率半导体器件)
    斯达半导表示,IGBT是目前发展最快的功率半导体器件之一。受益于工业控制、新能源、新能源汽车等领域的需求大幅增加,中国IGBT市场规模将持续增长。到2025年,预计中国IGBT市场规模将达到522亿人民币,年复合增长率达19.11%,是细分市场中发展最快的半导体功率器件。2021年,IGBT模块的销售收入占斯达半导主营业务收入的94%以上,是公司的主要产品。
    士兰微人士向记者介绍称,从形态上来看,功率半导体有芯片和模块两种形态,模块是多个芯片和电子器件形成的组合。比如,IGBT是电源的辅助装置,功耗往往都比较高,用于分配调节电压电流。在新能源汽车中,每个电驱会用到一个IGBT模块。
    斯达半导则表示,IGBT作为一种新型功率半导体器件,是国际上公认的电力电子技术第三次革命最具代表性的产品,是工业控制及自动化领域的核心元器件。其作用类似于人类的心脏,能够根据装置中的信号指令来调节电路中的电压、电流、频率、相位等,以实现精准调控的目的。因此,IGBT被称为电力电子行业里的“CPU”,广泛应用于新能源、新能源汽车、电机节能、轨道交通、智能电网、航空航天、家用电器、汽车电子等领域。
    功率半导体还应用于光伏的逆变器,光伏逆变器的主要功能为将太阳能电池组件产生的直流电转化为交流电,并入电网或供负载使用。安信证券分析师马良在近日的研报中称,IGBT广泛应用于光伏逆变器中,占逆变器价值量的20%-30%。以往光伏逆变器中的功率器件一般采用MOSFET,而MOSFET的通态电阻会随着电压的升高而增大,增加开关损耗,逐渐不适合使用于高压大容量的系统中。IGBT因其通态电流大、耐高压、电压驱动等优良特性,在中、高压容量的系统中更具优势,目前已逐渐取代MOSFET作为光伏逆变器和风力发电逆变器的核心器件。
    功率半导体的材料也在发生变化。根据斯达半导的介绍,近年来,以碳化硅(SiC)、氮化镓(GaN)等材料为代表的化合物半导体因其宽禁带、高临界击穿电场等优异的性能而备受关注。其中碳化硅功率器件受下游新能源汽车等行业需求拉动,市场规模增长快速。(记者注:禁带宽度是半导体的一个重要特征参量,反映了半导体中价电子被束缚强弱程度的一个物理量)
    根据马良的介绍,碳化硅材料热导率以及禁带宽度高于硅材料,采用碳化硅器件可减小逆变器的体积和重量。碳化硅的导热率是硅的3.3倍,且禁带宽度为硅的3倍,保证碳化硅可以在更高温度环境下工作。半导体材料的禁带宽度决定其器件的工作温度,材料禁带宽度的值越大,器件的工作温度也就越高。在高达600摄氏度的温度下,碳化硅器件仍然可以正常工作。硅在175摄氏度左右就无法正常运行,在200摄氏度时会变成导体,而碳化硅直到1000摄氏度左右才发生这种情况。
    斯达半导表示,2021年该公司在机车牵引辅助供电系统、新能源汽车行业、光伏行业推出的各类碳化硅模块得到进一步的推广应用。士兰微也表示,该公司碳化硅功率器件的中试线已在2021年上半年实现通线。目前,该公司已完成车规级SiC-MOSFET器件的研发,正在做全面的可靠性评估,将要送客户评价并开始量产。士兰微目前在厦门公司建设一条6英寸碳化硅功率器件芯片生产线,预计在2022年三季度实现通线。
    缺芯问题被误解?相关产品研发生产扩张中
    自去年以来,汽车产业频繁出现“缺芯”消息。而上述士兰微人士却向记者表示,大家对汽车缺芯的问题可能有些误解。
    该人士认为,芯片分为很多种类,不同的芯片用于不同的场景和环节。可能某些环节的芯片在某些时候会出现短暂的供不应求,不过这个问题被放大了。而且功率半导体的产线比较复杂,和普通产品的产线不同,每年产能并不是固定的。
    “整个芯片产业有上万亿元,首先要搞清楚缺的是什么‘芯’。只是泛泛地用‘缺芯’这样一个词语来形容目前汽车芯片产业的状况其实没有意义。”该人士表示。
    关于功率半导体的产线,斯达半导在年报中称,生产环节主要分为芯片和模块设计、芯片外协制造、模块生产三个阶段。比如,在芯片和模块设计阶段,公司完成IGBT等功率芯片和功率模块的设计;在芯片外协制造阶段,公司根据阶段一完成的芯片设计方案委托第三方晶圆代工厂制造自主研发的芯片,公司在外协制造过程中提供芯片设计图纸和工艺制作流程,不承担芯片制造环节;在模块生产阶段,公司将单个或多个功率芯片用先进的封装技术封装在一个绝缘外壳内。
    而相比之下,士兰微采用的是“设计制造一体”(IDM)的经营模式。士兰微在年报中表示,作为IDM公司,该公司带有资产相对偏重的特征,在外部经济周期变化的压力下,也会在一定程度上承受经营利润波动的压力。但是相对于轻资产型的设计公司,该公司在特色工艺和产品的研发上具有更突出的竞争优势,实现了特色工艺技术与产品研发的紧密互动,以及集成电路、功率器件、功率模块、微机电控制系统传感器、光电器件和化合物芯片的协同发展。
    根据斯达半导的年报,2021年该公司生产的应用于主电机控制器的车规级IGBT模块合计配套超过60万辆新能源汽车,其中A级及以上车型配套超过15万辆。同时,该公司的车用空调、充电桩、电子助力转向等半导体器件份额也有所提高。
    “2021年公司生产的应用于主电机控制器的车规级IGBT模块开始大批量配套海外市场,预计2022年海外市场份额将会进一步提高。”斯达半导表示。
    上述士兰微人士告诉记者,功率半导体的主要发展趋势之一是耐压越来越高。斯达半导也在年报中表示,2021年该公司在650V、750V以及1200V车规级IGBT的研发生产上均有突破。士兰微在年报中亦表示,2021年该公司自主研发的第五代IGBT和FRD芯片的电动汽车主电机驱动模块,已在国内多家客户通过测试,并已在部分客户批量供货。目前公司正在加快汽车级和工业级功率模块产能的建设。(记者注:FRD指快恢复二极管,是一种具有开关特性好、反向恢复时间短特点的半导体二极管)
    根据士兰微的年报,2021年该公司分立器件(具有单独功能且功能不能拆分的电子器件,功率半导体属于分立器件的一类)产品的营业收入为38.13亿元,较上年增长73.08%。分立器件产品中,MOSFET、IGBT、IGBT大功率模块、肖特基管、稳压管、开关管、TVS管(瞬态二极管)、快恢复管等产品的增长较快。
    除了新能源汽车、光伏领域之外,功率半导体还广泛应用于家电中,比如IPM(智能功率模块)。士兰微介绍称,2021年公司IPM模块的营业收入突破8.6亿元人民币,较上年增长100%以上。目前,该公司IPM模块已广泛应用到下游家电及工业客户的变频产品上,包括空调、冰箱、洗衣机,油烟机、吊扇、家用风扇、工业风扇、水泵、电梯门机、缝纫机、电动工具,工业变频器等。2021年国内多家主流的白色家电整机厂商在变频空调等家电上使用了超过3800万颗士兰微的IPM模块,较上年增加110%。

相关报告
  • 《英飞凌与日本SDK签订有关碳化硅材料供应和开发的合同》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2021-05-17
    • 德国慕尼黑的半导体制造商英飞凌科技股份有限公司(Infineon Technologies AG)已与日本晶圆制造商昭和电工(Showa Denko K.K.,简称SDK)签订了一项合同。合同内容有关碳化硅(SiC)材料的供应和开发,从而确保包括外延在内的各种基础材料的供应安全,以满足市场对SiC基产品不断增长的需求。Infineon与SDK之间的合同为期两年 SiC可以实现高效而强大的功率半导体,特别是在光伏、工业电源以及电动汽车(EV)的充电基础设施领域,功率半导体是不可或缺的基础材料。英飞凌表示,该公司拥有业界最大的工业应用SiC半导体产品组合。 英飞凌工业电源控制部门总裁Peter Wawer表示:“英飞凌在支持SiC基半导体市场方面的起着领导作用,因为英飞凌拥有复杂多样产品组合,并且仍在快速扩充。根据Yole 4月份的报告《复合半导体市场监测报告》,预计在未来五年内,SiC市场有望以每年30-40%的速度增长。在这个发展的市场中,与晶圆供应商SDK的合作,是英飞凌采购战略的重要一步。这将支持我们解决在长期发展过程中的所遇到的问题和需求。此外,我们计划与昭和电工合作进行材料方面的战略开发,在降低成本的同时提高质量。” 昭和电工公司高级董事总经理石川次郎说:“我们的目标是不断改进SDK的SiC材料,并跟新开发下一代技术,在这方面,我们认为英飞凌是出色的合作伙伴。”
  • 《住友矿山将量产新一代碳化硅功率半导体晶圆》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-01-19
    • 近日,住友矿山表示,计划量产新一代功率半导体晶圆,而且会使用自主研发的最新技术将价格降低10%到20%。住友矿山希望凭借这种新型碳化硅晶圆抢占美国科锐等领先企业的市场,使全球份额占比达到10%,预计2025年实现月产1万片。 住友矿山是全球最大的车载电池正极材料厂商,拥有物质结晶技术,现将利用其他业务所培育出的技术实力进入半导体材料领域。据了解,住友矿山所开发的技术是在因结晶不规则而导致价格较低的残次品“多晶碳化硅”上贴一层可以降低发电损耗的“单晶碳化硅”可将价格降低10%~20%。纯电动汽车的逆变器在采用这款新型晶圆所制成的碳化硅功率半导体时,能将电力损耗降低10%左右。通过提高功率半导体的性能,减小整个单个装置的尺寸,有利于延长纯电动汽车的续航里程。 从技术的角度来说,与硅基功率器件制作工艺不同,碳化硅器件不能直接制作在碳化硅单晶材料上,需要在导通型单晶衬底上额外生长高质量的外延材料,最后在外延层上制造各类器件。传统的碳化硅外延基于单晶衬底,以实现晶格匹配和降低缺陷密度(微管、位错、层错等),但是单晶碳化衬底制备的成本较高。“住友矿山可实现从多晶碳化硅衬底上外延单晶硅层材料,在技术与成本上具有明显的优势。”赛迪顾问集成电路中心高级咨询顾问池宪念向《中国电子报》记者表示。而成本方面,相对于硅基材料功率半导体,碳化硅功率半导体能够降低电力功耗,会是功率半导体产品领域未来具有发展潜力的竞品。此外,消费终端的生产对于价格十分敏感,住友矿山碳化硅新晶圆的成本能够降低1~2成,价格优势将会成为住友矿山有效的竞争力之一。 随着电动车对碳化硅功率半导体的需求日渐增长,这条新赛道上的竞争也越来越激烈。目前除了美国科锐外,美国II-VI公司及罗姆旗下的德国SiCrystal等也在涉足碳化硅半导体晶圆业务。 对于这项新技术是否可以帮助住友矿山抢占科锐市场的问题,池宪念认为,美国科锐公司是全球6/8英寸碳化硅单晶衬底材料可实现产业化的龙头公司,在市场和技术上具有领先优势。如果住友矿山的新一代碳化硅半导体晶圆材料能够通过下游厂商的验证,并实现量产,则其将成为美国科锐公司的有力竞争者。