《中外科学家实现量子纠错“完美编码”》

  • 来源专题:后摩尔
  • 编译者: shenxiang
  • 发布时间:2021-04-07
  • 据科技日报报道,中国科学技术大学潘建伟、朱晓波、陈宇翱团队,清华大学马雄峰团队,以及牛津大学等机构的科学家们用超导量子比特,对五量子比特纠错码进行了实验探索,在超导量子系统上验证了用超导量子比特实现量子纠错码的可行性。研究成果日前发表于《国家科学评论》上。

      要实现通用容错的量子计算,关键在于量子纠错。量子纠错中,一个重要的里程碑是实现优于简单的物理量子比特的逻辑量子比特的纠错。在未来10年,实现通用量子纠错码仍然是最大的挑战和难题。

      研究人员首先对超导量子比特进行专门的实验优化,实现了100多个量子门。用于实现五量子比特纠错码的设备是一个12比特超导量子处理器。在这12个量子比特中,研究人员选择了5个相邻的量子比特来进行实验,这些量子比特是通过电容耦合到它们最近的比特的。经过仔细校正和对门参数的优化,实现单比特门的平均保真度为0.9993,两比特门的平均保真度为0.986。仅通过使用单量子比特旋转门和两量子比特受控相位门,研究人员实现了对逻辑态进行编码和解码。

      在此基础上,研究人员在理论上编译和优化了编码过程,使最邻近受控相位门的数量减少到8个,最终实现了功能齐全的五比特纠错码的基本组成部分,其中包括将通用逻辑量子比特编码为纠错码。随后,研究人员对纠错码的关键特征进行了验证,包括识别任意单比特错误、逻辑态的逻辑门操作等,从而实现所谓“完美编码”。

相关报告
  • 《中外科学家合作发明全新中性锌空气电池》

    • 来源专题:中科院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2021-01-07
    • 复旦大学材料科学系青年研究员王飞团队通过国际合作开发了一种可充电锌空气电池。日前,相关研究成果发表于《科学》。 锌空气电池具有高理论能量密度、高安全性、低成本等优点,是一种具有前景的储能技术。目前锌空气电池主要使用高浓度碱性溶液作为电解液,电池无法在空气中长时间工作。 王飞团队与美国、德国的研究团队合作,通过设计电解液的组成和调控电极表面双电层,首次探索并实现了一种全新的基于过氧化锌的可逆生成的反应机制,并利用该反应机制制备了新型的非碱性锌空气电池;通过使用以三氟甲磺酸锌为代表的具有疏水阴离子的锌盐作为电解液,在空气正极表面构筑了以锌离子富集为特征的双电层结构,从而实现了锌离子与氧气反应的2电子转移反应,有效抑制了水分子参与的4电子反应。 在三氟甲磺酸锌电解液中,空气正极双电层结构中的锌离子与水分子的比值明显高于硫酸锌电解液,锌离子直接参与的2电子转移反应更易发生。理论模拟之外,实验结果也证实了在三氟甲磺酸锌电解液中正极发生2电子转移反应。材料分析方法结合电化学测试确定了过氧化锌为正极放电产物。非碱性锌空气电池中,电解液不与空气中的二氧化碳发生副反应,电池在空气中和氧气中均表现出稳定的长循环性能。 与传统的碱性锌空气电池相比,该非碱性锌空气电池具有明显优势:锌负极利用率高,从而大幅提高电池的能量密度,降低单位能量密度的电池成本;电池充放电反应可逆性高,具有长循环寿命;电池可在空气中稳定运行,简化了电池结构,降低电池组件的耐腐蚀性要求。
  • 《中外科学家合作研制出专用型光量子模拟芯片》

    • 来源专题:中科院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-07-04
    • 实现量子信息的有效传输、处理和计算,是推动量子计算机发展的关键。近日,丹麦科技大学硅基光学通信研究中心高级研究员丁运鸿、北京大学物理学院现代光学研究所研究员王剑威以及英国布里斯托尔大学教授Stefano Paesani等组成的国际合作团队利用硅基光量子芯片技术,研发出一款集成化的专用型光量子计算和量子模拟器。相关研究成果于7月2日发表在《自然—物理》杂志。 量子计算机有着超越经典计算机的强大计算能力,有望解决一些经典计算机不能有效解决的特殊且重要的问题。在量子计算机发展过程中,存在两大主要技术挑战:一是如何搭建一个庞大、可控的量子器件和量子系统;二是如何制备与调控多体单量子态来,从而达到对量子信息的传输、处理与计算等功能。 硅基纳米集成光量子芯片技术被认为非常有潜力解决上述难题。事实上,该国际合作团队于去年便研发出了一款集成近1000个光子元器件的大规模硅基光量子芯片,实现了对高维度光子量子纠缠体系的高精度和普适化量子调控和量子测量。但当时还存在的问题是,如何在光量子芯片上制备出多光子态,并实现高效的量子信息处理和计算功能。 “本研究为解决该问题提供了解决方案。”论文通讯作者之一丁运鸿告诉《中国科学报》,硅基光量子芯片技术以单光子态为载体来携带量子信息,利用纳米尺度(比头发丝还要小100倍)的硅波导光子器件来对量子信息进行有效的传输、操控与测量。“更关键的是,硅基光量子芯片的制备工艺和当前成熟的微电子芯片的制备工艺完全兼容,这使得未来构建大规模硅基光量子信息处理硬件和内核成为可能。” 本研究中,研究人员通过优化设计、加工高性能的硅基集成单光子源阵列,成功制备了8个光子量子态,并使之在12种模式低损耗波导阵列的结构中发生高质量的量子干涉。通过重构芯片的非线性量子光源阵列,该光量子处理器芯片可以实现两类重要的量子玻色采样算法,包括触发型玻色采样和高斯玻色采样算法。 此外,研究人员还利用量子玻色采样,模拟了化学分子中本征振动模式的动态演化过程,这为光学专用量子计算机在模拟复杂物理化学体系上的应用提供了有力的实验依据。研究分析表明,进一步优化芯片上器件性能,有望实现约20个光子的专用量子计算和量子模拟器,以及有效解决一些复杂物理化学体系的量子模拟问题。 丁运鸿表示,“硅基光子集成芯片技术是一项非常强大的技术,可广泛应用于量子信息的各个领域。基于该技术开发出了硅基光量子处理芯片,这使得我们更有信心在不久的将来达到‘量子优势’。光量子技术结合硅基光子集成技术,将在未来量子技术中发挥重要作用。” 论文共同通讯作者王剑威也指出,集成光量子信息处理芯片具有非常优越的可扩展性、可控性和可编程性,适合构建一个专用的光量子信息处理和光量子计算模拟内核。“未来,我们希望通过发展大规模集成的光量子芯片硬件,探索量子计算在模拟物理过程和化学分子结构中的应用。” 论文相关信息:DOI:10.1038/s41567-019-0567-8