《PNAS:一般环流模型过时了吗?》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-12-01
  • 大气环流模型(general circulation model,GCM)是研究多尺度时间内地球系统演化状态的重要支柱,该术语可以追溯到大气数值模拟的起源。控制旋转球体上流体循环的方程式使用基本的Navier-Stokes方程式,其专门用于行星循环的形式是在20世纪之交首次制定的。

    2021年诺贝尔物理学奖表彰了使用GCM所做的一些工作。然而,围绕它们在未来的持续作用存在相当大的争论。经常提到的GCM的局限性是结构误差和跨模型的不确定性,有相当多的文献认为,GCM的局限性需要进行重大改革,才能在气候建模方面取得进一步进展。现在可以通过大数据和机器学习在大规模数据中整理和提取信息,这些方法在多个领域取得了一些惊人的成功:例如,AlphaFold可以直接从数据中破译复杂分子的结构。这导致人们猜测我们可能已经进入了“后理论科学”时代,这也在许多领域引起了激烈争论:大规模结构是否直接从细节和数据的添加中产生,以及从数据建立模型的局限性可能在哪里。

    研究人员在未来一代模型的背景下考虑这些缺点,这些模型可能会通过更高的分辨率和细节来解决这些问题,或者通过使用机器学习技术更好地将它们与观察、理论和过程模型相匹配。他们认为,校准远非模型的弱点,而是复杂系统模拟的基本要素,有助于理解其内部工作原理。可以校准模型以揭示精细尺度细节和对外部扰动的全局响应。新方法能够阐明和改进气候过程不同层次抽象表示之间的联系,在可预见的未来,GCM将继续发挥核心作用。该研究结果发表在《PNAS》期刊上。(王琳 编译)

  • 原文来源:https://www.pnas.org/doi/10.1073/pnas.2202075119
相关报告
  • 《一个新的理论模型捕获自旋动力学的Rydberg分子》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2019-11-15
    • Rydberg分子是由一个Rydberg原子上的几十个或几百个原子组成的大分子。这些分子有永久的偶极子。当其中一个原子处于高度激发态时,即为一对相反的带电或磁化的极。 几年来,物理学家们一直在理论和实验上研究Rydberg分子。然而,大多数研究这些分子的研究都只集中在不涉及量子自旋的情况下,因为Rydberg分子的多体性质使得分析它们的自旋动力学特别具有挑战性。 在最近的一次理论学习,东京大学的研究员,中国科学院,马克斯普朗克研究所和哈佛大学能够捕捉Rydberg-electron自旋相互作用的动力学和原子的轨道运动,使用一种新的方法,结合高斯拟设一个impurity-decoupling转换。他们的论文发表在《物理评论快报》(Physical Review Letters)和《物理评论A》(Physical Review A)上,介绍了一种新的理论模型,该模型也可应用于其他量子多体问题。 “由于Rydberg分子固有的多体性质,对其自旋动力学的分析一直是一个具有挑战性的问题,”进行这项研究的研究人员之一Yuto Ashida告诉Phys.org。“我们研究的主要目的是解决这个问题,推进我们对多刺里德伯气体的不平衡自旋动力学的理解。” 摘要研究自旋不平衡的主要挑战在于,物理学家必须同时考虑原子的轨道运动和通过超长距离耦合而产生的杂质-环境纠缠。这使得捕获Rydberg分子的自旋动力学变得非常困难。 “据我们所知,目前还没有一种理论方法适用于这种新型的量子多体问题,”芦田解释道。这就是为什么我们开发了一种新的变分方法来解决泛型的玻色子量子杂质问题。 Ashida和他的同事提出的新的理论方法是基于一个被称为“解开经典变换”的想法,这个想法是由同一个研究团队在之前的一篇论文中提出的,也发表在PRL上。解缠正则变换利用奇偶校验对称性来完全解耦杂质和环境自由度,这最终使研究人员能够以一种非常有效的方式克服捕获Rydberg气体中自旋动力学的相关问题。 Ashida和他的同事们用来捕获Rydberg电子自旋动力学和Rydberg分子中原子轨道运动相互作用的变分方法,结合了分离正则变换和粒子浴的高斯ansatz。这种方法使研究人员得以揭示传统杂质问题中不存在的几个特征。 这些特征之一是相互作用引起的吸收光谱的重正化,这从分子束缚态中很难得到简单的解释。利用他们的变分法,研究人员还能够观察到持久的里德堡电子自旋振荡。 芦田说:“我们研究中最有趣的发现是,尽管目前的多体相互作用问题具有不可积性,但自旋进动的寿命却出乎意料的长。”“我们把这个特征解释为所谓的中心自旋问题的可积性的残余,如果我们在我们的模型中取无限质量极限,就可以得到它。” Rydberg分子中自旋进动的持续时间长得惊人,这一发现可能会对物理学的几个子领域产生影响,包括原子、分子和光学(AMO)物理学。事实上,在复杂的多体系统中存在的弛豫和热化仍然是AMO物理和统计物理中一个活跃的研究领域。 在未来,研究人员开发的变分模型和他们进行的分析也可以应用于其他系统的原子物理和量子化学。对于高轨道量子数的电子激发与旋量量子浴相互作用的系统尤其如此。 “在我们的下一步研究中,我们希望进一步扩展我们的模型,使之包括里德堡电子的非零角动量,”芦田说。其他开放的研究问题包括我们的问题泛化到费米电子浴,应用我们的一般变分方法来解决其他有挑战性的量子杂质问题。我们希望我们的研究将促进这些方向的进一步研究。”
  • 《PNAS:深入了解海气交换作用改善了全球气候模型》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-04-03
    • 公海湍流和寒冷的高纬度地区破浪带来的气泡注入,是大气进入海洋的一种被低估的输送方式。高纬度地区海气体交换机理对于预测氧气和二氧化碳等关键气体海洋库存变化的气候模型非常重要。 近期发表在《Proceedings of the National Academy of Sciences》上的一项由WHOI领导的新研究“北大西洋深处的溶解气体追踪海洋通风过程”,将新的地球化学示踪剂和海洋循环模型结合起来,研究大气气体进入深海的物理学过程。研究在百慕大大西洋BATS站点(北纬31°40,西经64°10),重复巡航收集了1988年以来海洋表层水到深层水的月度数据,使用了新技术精确测量了北大西洋4.5公里深处海水样本中的惰性气体同位素。惰性气体通过海面与大气交换后,可以稳定存在于海水中。因此,百慕大海岸北大西洋深处的溶解惰性气体同位素可以揭示特殊地区气体交换物理学过程。 论文的主要作者Alan Seltzer表示,新发现表明高纬度海洋中气泡的溶解可能是惰性气体、氧气和氮气进入深海的主要途径。这项研究对理解气体进入海洋的基本物理学迈出了新的一步。海洋吸收和释放气体过程,是气候变化反应预测极具挑战且重要的一步。二氧化碳和其他温室气体在深海(约占海洋总体积的75%)和大气之间的交换发生在高纬度地区的冬季,特别是在风暴事件中。对北大西洋深处惰性气体浓度的测量记录了在大风暴事件中形成的大气泡的重要性,大大增加了我们对深水气体交换率的理解。这提高了人们量化二氧化碳和温室气体在海气之间交换的能力,并预测气候对它们在大气中的浓度变化的响应,这对于制定缓解全球变暖的政策至关重要。(於维樱 编译)