《宁波材料所设计制备一种新型硫正极结构的全固态锂硫电池》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-06-20
  • 来源:中国科学院宁波材料所

    锂硫电池被认为是最有发展潜力的下一代高能量密度储能器件之一,其正极材料单质硫的理论比容量和比能量可高达1675 mAh/g和2567 Wh/kg,是目前商用锂过渡金属氧化物正极的五倍。然而,传统锂硫电池的安全性与循环性能差是其面临的主要挑战,严重影响了商业化进程。采用无机固体电解质取代传统有机电解液的全固态锂硫电池,能够有效抑制多硫化物的产生,从而消除其穿梭效应,并能大幅提高其安全性,是未来锂硫电池发展的重要方向。

      尽管全固态锂硫可以解决目前传统锂硫电池面临的问题,然而其带来了新的挑战,如固-固界面问题以及应力/应变等效应导致的电池容量衰减等问题,是影响全固态锂硫电池循环寿命的关键。近日,中国科学院宁波材料与工程研究所固态锂电池团队姚霞银研究员领导的小组与美国马里兰大学合作,设计了一种新型硫正极结构的全固态锂硫电池,通过在还原氧化石墨烯上沉积超薄(~2nm)非晶态纳米硫层保持复合材料的高的电子传导率,进而将还原氧化石墨烯/硫复合材料均匀分散在超锂离子导体Li10GeP2S12基复合材料中,从而实现高离子电导率和低的应力/应变。以上述还原氧化石墨烯/硫复合材料-Li10GeP2S12-乙炔黑混合物作为正极层,Li10GeP2S12/改性Li3PS4双层电解质作为固态电解质层,金属锂为负极组装全固态锂硫电池,其充放电曲线与传统锂硫电池截然不同,只有一对充放电平台,显著抑制了多硫化物的产生。

      60°C条件下,0.05C首次放电容量为1629 mAh/g,首次库伦效率达到90%;同时显示出优异的倍率性能,在0.1 C,1.0 C和2.0 C不同倍率进行充放电,发挥出1384.5,903.2和502.6 mAh/g的可逆容量;1.0 C大倍率长循环充放电下,循环750圈后仍可以保持830 mAh/g的可逆容量,电池单次循环容量衰减率仅为0.015%,表现出比传统锂硫电池显著提升的循环性能。

      相关工作发表于Advanced Energy Materials,2017,doi: 10.1002/aenm. 201602923。

      图1 全固态锂硫电池结构示意图及电池性能

        上述研究工作得到了中国科学院纳米先导专项(XDA09010201)、国家自然科学基金(51502317)、中国科学院青年促进会(2017342)等项目的支持。

相关报告
  • 《宁波材料所在全固态锂电池无锂正极方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-09-18
    • 基于转化反应的黄铁矿型FeS2具有环境友好、价格低廉以及理论比容量高(890mAg-1)等优点。在锂电池中,FeS2在充放电过程中会发生反应。   显然,在首次循环之后,Li-FeS2电池将变成Li-FeSy及Li-S电池。由于多硫化物的穿梭效应、活性物质在转化反应过程中的体积变化以及电绝缘性生成产物Li2S/S的较差反应动力学,导致FeS2在基于有机溶剂的液态电解液中表现出较差的电化学性能。为此,研究人员通过调整电解液的组分以降低多硫化物的穿梭效应,但多硫化物的穿梭效应只能在一定程度上得到缓解。采用固体电解质能完全避免多硫化物的穿梭,但在固态电池中活性物质的体积变化对电池性能的影响比液态电池更为显著。常用的解决手段是制备FeS2与导电材料的复合物,同时达到缓解循环过程中体积变化和提高反应动力学的效果。但导电材料不会对电池的容量有贡献,从而降低电池质量能量密度。   针对以上问题,中国科学院宁波材料技术与工程研究所所属新能源所姚霞银研究员团队与陈亮研究员团队合作,通过第一性原理计算与实验相结合的方式,创新性地在FeS2中引入具有催化作用的过渡金属,达到了在不牺牲电池质量能量密度的前提下,提高FeS2在全固态锂电池中的反应动力学的目的。通过对比不同过渡金属(Cu、Co和Ni)对FeS2形貌及电化学性能的影响,筛选出Co对FeS2性能具有最优化作用(图1)。并且所得到的Co0.1Fe0.9S2具有最小的颗粒尺寸,这有利于提高材料的比表面积,缓解循环过程中的体积变化以及减小电化学反应过程中Li+的传输路径。电化学测试结果表明,是电化学反应中的决速步骤,而Co的加入,对该反应有明显的促进作用,使基于FeS2的全固态电池在500mAg-1电流密度下循环100圈后,可逆容量从197.1mAhg-1提高到543.5mAhg-1,该提升效果明显优于过渡金属Cu和Ni。   研究人员进一步地通过密度泛函理论计算的方法确定了Co掺杂后决速步能垒从2.09eV降低至1.86eV。DOS结果也显示,由于d轨道填充作用,多一个d电子的Co使得费米能级附近态密度提高,从而提高了电化学活性(图2)。   相关工作发表于ACS Nano, 2019, 13, 9551-9560,该工作得到了国家重点研发计划(2018YFB0905400)、国家自然科学基金面上项目(51872303)、中国科学院青年创新促进会(2017342)等项目的资助。 图1 Co对FeS2催化作用示意图 图2 (a) Li1.25Co0.125Fe0.875S2的结构图, (b) Li1.25FeS2 和 Li1.25Co0.125Fe0.875S2的电子态密度图
  • 《青岛能源所制备出新型纳米复合材料用于锂硫电池隔膜改性》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-05-24
    • 锂硫电池,以单质硫作为正极,金属锂为负极,理论比能量可达2600Wh kg -1 ,是传统锂离子电池的3~5倍,且由于单质硫在地球中储量丰富、价格低廉,因此被认为是最具发展潜力的下一代高比能量二次电池体系之一。然而,由于锂硫电池在充放电过程中产生的聚硫化物易溶于电解液,并通过隔膜到达金属锂负极,进而产生严重的“穿梭效应”,引起活性物质损失、硫化物沉积不均,导致电池循环性能变差。    基于以上问题,青岛能源所先进储能材料与技术研究组研究人员从锂硫电池隔膜改性入手,在碳纳米管(CNT)表面引入过渡金属化合物CoNi 1/3 Fe 2 O 4 (CNFO),成功制备出CNFO@CNT纳米复合材料,并通过真空抽滤方式将其均匀涂布到商用隔膜表面。受益于CNFO的强极性吸附作用和CNT的导电作用,该改性隔膜可以有效吸附正极溶出的聚硫化合物并加以循环再利用。  将CNFO@CNT改性隔膜应用于锂硫电池中,实验结果证明在2.0 C下常温循环250圈后容量保持率高达84%。不仅如此,研究人员将改性后的锂硫电池置于高温60℃中测试其循环稳定性,发现在CNFO较强的化学吸附作用下,0.5 C经过100圈循环后,容量保持率依然能够达到78%,并保持98%以上的库伦效率。该改性材料相比CNT改性隔膜,无论是常温还是60℃高温,对锂硫电池的倍率及循环稳定性都有较大的提升。    相关成果已发表在ACS Applied Materials & Interfaces(Tao Liu, et al,Jianfei Wu. doi:10.1021/acsami.9b02136)上。此外,以固体电解质取代传统电解液的全固态锂硫电池可以从根本上解决聚硫化物的溶解难题,研究组在目前开发的锂硫电池和高电导率硫化物固体电解质的基础上,下一步将继续开发高性能锂硫全固态电池,相关成果已在J.Mater.Chem.A(2018, 6, 23486–23494),Electrochim. Acta(2019, 295, 684-692)等期刊发表,研究成果得到了中国科学院率先行动相关人才计划、国家自然科学基金、青岛能源所-大连化物所融合基金项目的支持。