《光合作用产生电荷的机制》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-04-27
  • Photosynthesis requires a mechanism to produce large amounts of chemical energy without losing the oxidative power needed to break down water. A Japanese research team has clarified part of this mechanism, marking another step towards the potential development of artificial photosynthesis. The findings were published on February 27 in the online edition of The Journal of Physical Chemistry Letters.

    The team was led by Professor KOBORI Yasuhiro (Kobe University Molecular Photoscience Research Center) and PhD student HASEGAWA Masashi (Graduate School of Science) with Associate Professor MINO Hiroyuki (Nagoya University Graduate School of Science).

    During the water-splitting reaction in photosynthesis, plants produce oxygen by converting solar energy into chemical energy, providing the energy source necessary for their survival. This reaction is carried out by a protein complex in chloroplasts (located in leaves) called the photosystem II complex.

    In 2015 Professor Kobori's research team succeeded in analyzing the electronic interactions and 3-dimensional placement of the initial charge separation produced directly after photoreaction in the photosynthetic reaction center of purple bacteria, which do not cause the oxidation potential for water-splitting. However, in the photosystem II complex for higher plants, the configuration of the initial charge separation state was unclear, and it was a mystery as to how it led to an effective water-splitting reaction while retaining the high oxidative power.

    The scientists extracted thylakoid membranes (where the photoreaction takes place in photosynthesis) from spinach, added a reducing agent, and irradiated the samples. This enabled them to detect microwave signals from the initial charge separation state to a degree of accuracy of a 10 millionth of a second. They developed a method of analyzing the microwave signals using spin polarization imaging. For the first time it was possible to carry out 3D view analysis of the configuration of the electric charge produced directly after exposure to light as a reactive intermediate. This was done with an accuracy to within 10 millionth of a second, as consecutive photography. Based on this visualization, they also quantified the electronic interaction that occurs when electron orbits overlap for molecules with electric charges.

    The initial electric charge separation structure clarified by this analysis was not very different from the structure before the reaction, but the imaging analysis showed that the positive electric charge that occurred in the pigment as a reactive intermediate existed disproportionately in chlorophyll single molecules. It suggests that there is strong stabilization caused by electrostatic interaction between the charges.

    It has been revealed that the return of the negative charge is suppressed, since the overlap between electron orbits is greatly limited by the insulating effect of the vinyl group terminus. This means that it becomes possible to use the high oxidizing powers of the positive charge in chlorophyll (PD1) for the subsequent oxidative decomposition of water.

    Based on these findings, researchers have unlocked part of the mechanism to effectively produce high amounts of chemical energy without loss of the oxidative power needed to split water in photosynthesis. These findings could help to design an "artificial photosynthesis system" that can provide a clean energy source by efficiently converting solar energy into large amounts of electricity and hydrogen. The application of this principle could contribute to solving issues with energy, the environment and food shortages.

    Journal Reference:

    Masashi Hasegawa, Hiroki Nagashima, Reina Minobe, Takashi Tachikawa, Hiroyuki Mino, Yasuhiro Kobori. Regulated Electron Tunneling of Photoinduced Primary Charge-Separated State in the Photosystem II Reaction Center. The Journal of Physical Chemistry Letters, 2017; 8 (6): 1179 DOI: 10.1021/acs.jpclett.7b00044

  • 原文来源:https://www.sciencedaily.com/releases/2017/04/170417085006.htm
相关报告
  • 《光合作用如此有效的原因?》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-07-06
    •     当光合细胞吸收来自太阳的光时,称为光子的能量包在一系列收集光的蛋白质之间跳跃,直到它们到达光合反应中心。在那里,细胞将能量转化为电子,最终为糖分子的生产提供动力。这种通过光收集复合物的能量转移以极高的效率发生:几乎每个被吸收的光光子都会产生一个电子,这种现象被称为近单位量子效率。     麻省理工学院化学家的一项新研究为光收集复合物(也称为天线)的蛋白质如何达到如此高的效率提供了一个潜在的解释。研究人员第一次能够测量光收集蛋白质之间的能量转移,从而发现这些蛋白质的无序排列提高了能量转导的效率。 “为了让天线工作,你需要远距离的能量传导。我们的主要发现是,光收集蛋白质的无序组织提高了远距离能量传导的效率,”麻省理工学院化学副教授、这项新研究的资深作者加Gabriela Schlau-Cohen说。     麻省理工学院博士后Dihao Wang和Dvir Harris以及前麻省理工学院研究生Olivia Fiebig博士是这篇论文的主要作者,这篇论文将发表在《PNAS》上。麻省理工学院化学教授Jianshu Cao也是这篇论文的作者之一。 能量捕获     在这项研究中,麻省理工学院的研究小组专注于紫色细菌,这种细菌通常存在于缺氧的水生环境中,通常被用作光合作用光收集研究的模型。     在这些细胞内,被捕获的光子穿过由蛋白质和吸收光的色素(如叶绿素)组成的光收集复合物。利用超快光谱学,一种使用极短激光脉冲来研究在飞秒到纳秒时间尺度上发生的事件的技术,科学家们已经能够研究能量如何在单个这些蛋白质中移动。然而,研究能量如何在这些蛋白质之间传递已被证明更具挑战性,因为它需要以一种可控的方式定位多个蛋白质。     为了建立一个实验装置,他们可以测量能量如何在两种蛋白质之间传递,麻省理工学院的研究小组设计了合成的纳米级膜,其成分与自然发生的细胞膜相似。通过控制这些被称为纳米片的膜的大小,他们能够控制嵌入在纳米片中的两个蛋白质之间的距离。      在这项研究中,研究人员将紫色细菌中发现的两个版本的主要光收集蛋白LH2和LH3嵌入到他们的纳米圆盘中。LH2是在正常光照条件下存在的蛋白质,而LH3是一种通常只在弱光照条件下表达的变体。 使用麻省理工学院的低温电子显微镜。利用纳米设备,研究人员可以对他们的膜内蛋白质进行成像,并显示它们的位置与在天然膜上看到的距离相似。他们还能够测量光捕获蛋白质之间的距离,这在2.5到3纳米之间。 无序更好     由于LH2和LH3吸收的光波长略有不同,因此可以使用超快光谱来观察它们之间的能量传递。对于紧密排列在一起的蛋白质,研究人员发现,一个能量光子在它们之间传播大约需要6皮秒。对于相隔较远的蛋白质,这种转移需要15皮秒。     更快的旅行意味着更有效的能量转移,因为旅行时间越长,在转移过程中损失的能量就越多。     “当光子被吸收时,在能量通过非辐射衰变等不必要的过程损失之前,你只有很长时间,所以它转换得越快,效率就越高,”Schlau-Cohen说。     研究人员还发现,排列在晶格结构中的蛋白质比排列在随机组织结构中的蛋白质表现出更低的能量传递效率,因为它们通常在活细胞中。 “有序的组织实际上比无序的生物组织效率低,我们认为这很有趣,因为生物往往是无序的。这一发现告诉我们,这可能不仅仅是生物学不可避免的缺点,而且生物体可能已经进化到可以利用它,”Schlau-Cohen说。 现在他们已经建立了测量蛋白质间能量转移的能力,研究人员计划探索其他蛋白质之间的能量转移,例如天线蛋白质到反应中心蛋白质之间的转移。他们还计划研究在紫色细菌以外的生物体(如绿色植物)中发现的天线蛋白质之间的能量传递。
  • 《瑞士巴塞尔大学研究团队开发出模仿植物光合作用机制的新型人工分子,可在接近自然光强度下稳定储存两个正电荷和两个负电荷,为太阳能转化为碳中和燃料提供新路径》

    • 来源专题:水与大气环境治理
    • 编译者:胡晓语
    • 发布时间:2025-08-27
    • 瑞士巴塞尔大学的研究团队在人工光合作用领域取得了重要进展,他们开发了一种新型人工分子,能够在光照条件下模仿植物自然的光合作用机制,同时储存两个正电荷和两个负电荷。这一成果发表在《自然·化学》杂志上,为未来将太阳能转化为碳中和燃料提供了新的可能性。 该分子由5个功能单元串联组成,通过两步光照的方法实现四电荷的存储,使其可以在接近自然阳光强度的条件下进行反应。这些分离的电荷在分子中能够保持相对稳定状态,持续足够长时间,从而参与后续的化学反应,例如将水分解为氢气和氧气。 研究团队成员表示,这一分子成功实现了多电荷分离与储存的核心功能,为人工光合作用的电子转移机制提供了深刻理解,也为未来设计更高效、更接近自然系统的太阳能燃料转化技术奠定了基础。这一成果能显著推动可持续能源的发展,使人类向绿色、碳中和的能源目标迈进。