《【 Nature Energy 】无序岩盐研究带来电池突破》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2024-08-27
  • 在过去十年中,无序岩盐一直被当作一种潜在的突破性正极材料来研究,这种材料可用于锂离子电池,也是为手机、电动汽车和可再生能源存储等各种应用创造低成本、高能量存储的关键。麻省理工学院的一项新研究正在确保这种材料实现这一功能。

    在东京电力公司核工程教授、材料科学与工程教授 Ju Li 的领导下,一个研究小组描述了一种新型的部分无序岩盐阴极,这种阴极集成了多阴离子,被称为无序岩盐-多阴离子尖晶石(DRXPS),可以在高电压下提供高能量密度,同时显著提高循环稳定性。

    该项研究发表在 Nature Energy 上,论文的第一作者 Yimeng Huang 表示,阴极材料通常需要在能量密度和循环稳定性之间做出权衡......我们的目标是通过设计新的阴极化学物质来突破这一难题。这个材料家族具有高能量密度和良好的循环稳定性,因为它整合了岩盐和多阴离子橄榄石这两种主要类型的阴极材料,因此具有这两种材料的优点。重要的是,新材料系列主要由锰组成,锰是一种富含地球的元素,其价格大大低于目前阴极通常使用的镍和钴等元素。锰的价格至少比镍低五倍,比钴低约 30 倍,锰也是实现更高能量密度的关键之一,因此这种材料在地球上的富集程度更高,这是一个巨大的优势。

    通往可再生能源基础设施的可行之路

    在全球寻求建设低碳或无碳未来所需的可再生能源基础设施时,这一优势将尤为重要。电池在其中扮演着尤为重要的角色,这不仅是因为电池具有利用电动汽车、公共汽车和卡车实现交通去碳化的潜力,还因为电池对于解决风能和太阳能发电的间歇性问题至关重要,因为电池可以储存多余的能量,然后在夜间或风平浪静的日子里,当可再生能源发电量下降时,将多余的能量输入电网。鉴于钴和镍等材料的高成本和相对稀缺性,快速扩大电力存储容量的努力很可能会导致极端的成本激增和潜在的严重材料短缺。

    研究人员表示:"如果我们想真正实现能源生产、运输等方面的电气化,我们就需要地球上丰富的电池来存储间歇性的光伏和风能。”

    三星纳米科学与纳米技术研究特聘教授、加州大学伯克利分校材料科学与工程学教授 Gerbrand Ceder 也有同感。

    “锂离子电池是清洁能源转型的关键部分,"Ceder 说。“锂离子电池的持续增长和价格下降取决于由地球富集材料制成的廉价、高性能阴极材料的开发,就像这项工作中介绍的那样。

    克服现有材料的障碍

    新研究解决了无序岩盐阴极面临的主要挑战之一--氧迁移率。虽然这种材料长期以来一直被认为具有极高的容量--高达每克 350 毫安培小时--与传统阴极材料相比(传统阴极材料的容量通常在每克 190 到 200 毫安培小时之间),但它们并不十分稳定。

    高容量的部分原因是氧的氧化还原作用,当阴极充电到高电压时,氧会被激活。但是,当发生这种情况时,氧气就会流动,导致与电解质发生反应,并使材料降解,最终使其在长时间循环后变得毫无用处。为了克服这些挑战,Huang 添加了另一种元素--磷--它本质上就像胶水一样,可以将氧固定在原处,从而缓解降解。

    为未来研究指明方向

    虽然这项研究中描述的阴极材料可能会对锂离子电池技术产生变革性影响,但仍有几条研究途径有待继续探索。未来的研究领域包括努力探索制造这种材料的新方法,特别是在形态和可扩展性方面的考虑。

    现在使用高能球磨进行机械化学合成,结果是形态不均匀,平均粒径较小(约 150 纳米)。这种方法的可扩展性也不高,研究人员正在尝试使用一些替代合成方法来获得更均匀的形态和更大的颗粒尺寸,能够提高材料的体积能量密度,并探索一些涂层方法,从而进一步提高电池性能。当然,未来的方法应具有工业可扩展性。

    此外,无序岩盐材料本身并不是一种特别好的导体,因此需要添加大量的碳--多达阴极浆料重量的20%--以提高其导电性。如果研究小组能在不影响性能的前提下减少电极中的碳含量,那么电池中的活性物质含量就会更高,从而提高实际能量密度。

    原文链接:More information: Yimeng Huang et al, Integrated rocksalt–polyanion cathodes with excess lithium and stabilized cycling, Nature Energy (2024). DOI: 10.1038/s41560-024-01615-6


  • 原文来源:https://techxplore.com/news/2024-08-disordered-salts-battery-breakthrough.html?deviceType=mobile
相关报告
  • 《北大、上交大、西交大等10大高校钙钛矿太阳能电池技术研究突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-11
    • 回首2018年,钙钛矿太阳能电池研究突破报道不断,屡破光电转化效率记录。 钙钛矿,是一种普通的金属有机化合物晶体,主要成分是钛酸钙(CaTiO3),最早由俄罗斯矿物学家Lev Perovski命名于1839年,自2009年开始被用于太阳能电池研究,《科学》评其为2013年的10大科学突破之一。 2018年,国内钙钛矿太阳能电池研究成果丰富。本次,新材料在线® 总结了北京大学、上海交通大学、西安交通大学、华东理工大学、北京理工大学等10所高效的最新技术成果,以助您了解钙钛矿在太阳能光伏领域的研究进展。 1、陕西师范大学:稳定高效的全无机钙钛矿电池研究取得进展 11月12日消息,陕西师范大学材料科学与工程学院刘生忠教授团队在全无机CsPbI3钙钛矿电池领域取得重要进展,研究人员首先使用氢碘酸和碘化铅为原料制备出HPbI3+x中间体,进而制备出晶体结构扭曲的CsPbI3材料,其禁带宽度进一步降低至1.69 eV。随后通过苯乙胺碘添加剂加入到前驱体溶液中,制备出结晶质量优异,晶格扭曲的CsPbI3钙钛矿材料(β-CsPbI3, γ-CsPbI3)。 经过优化,最终得到的器件光电转换效率可达到15.07%,经过300h持续光照以及干燥空气中保存60天后,效率没有明显的降低,促进了CsPbI3钙钛矿太阳能电池进一步发展。相关工作已发布于《Nature Communications》。 2、南京工业大学:功率转换效率达18.2%的准二维钙钛矿太阳电池 10月29日消息,南京工业大学海外人才缓冲基地(先进材料研究院)黄维院士、王建浦教授团队在钙钛矿领域取得新研究进展。利用3溴苯甲胺制备了高结晶性、低缺陷的准二维钙钛矿薄膜。基于这种独特结构的钙钛矿薄膜,实现了功率转换效率达18.2%的准二维钙钛矿太阳电池。 未封装器件在40%相对湿度的大气环境下老化2400小时,效率仍保持初始值的82%。将未封装器件浸入水中60秒,其参数几乎没有变化,展现出优异的水稳定性。该研究表明,基于3溴苯甲胺的准二维钙钛矿材料有望实现高效稳定的钙钛矿光电器件,而精确调控钙钛矿薄膜生长是实现这一目标的关键因素之一。相关工作已发布于《Advanced Materials》。 3、上海科技大学:效率达到9.4%的非铅钙钛矿太阳能电池 10月9日消息,上海科技大学宁志军教授课题组利用假卤素调控剂NH4SCN调控锡钙钛矿结晶生长,成功制备了二维-准二维-三维(2D-Quasi 2D-3D)梯度结构的钙钛矿薄膜。此梯度结构能有效降低锡钙钛矿薄膜的氧化和缺陷浓度,基于此梯度结构的锡钙钛矿太阳能电池实现了9.41%的光电转化效率,是目前稳态输出效率最高的非铅钙钛矿太阳能电池。 该研究为低维梯度钙钛矿薄膜结构的调控提供了一种新的思路,对钙钛矿太阳能电池无铅化的进一步发展具有重要意义。相关工作已发布在Cell Press旗下的能源旗舰期刊《Joule》。 4、南京大学:稳态转换效率达20.7%和19.1%的宽带隙钙钛矿太阳能电池 8月11日,南京大学现代工程与应用科学学院的谭海仁教授与多伦多大学的Edward Sargent教授研究发现有偶极性的有机阳离子对有机-无机杂化钙钛矿材料的缺陷性能具有显著的影响,在钙钛矿材料中引入少量的偶极性阳离子,可以大大降低宽带隙钙钛矿太阳能电池中的非辐射复合损失,大幅提升光电转换效率。 基于1.65 eV和1.75eV的宽带隙钙钛矿太阳能电池的稳态转换效率分别高达20.7%和19.1%,均是目前报道的宽带隙钙钛矿电池中的最高效率值。该工作为进一步提升钙钛矿太阳能电池的效率提供了新方法,也为获得高效率钙钛矿基叠层光伏器件(比如钙钛矿-晶体硅叠层电池、钙钛矿-钙钛矿叠层电池)提供了良好的基础。相关工作已发布于《Nature Communications》。 5、华东理工大学:钙钛矿太阳能电池空穴传输材料研究取得进展 7月18日消息,华东理工大学化学与分子工程学院吴永真特聘教授和朱为宏教授通过引入弱吸电子的喹喔啉单元,构建给体-受体-给体(D-A-D)型HTM,合理调控HTM的HOMO能级,优化钙钛矿太阳能电池器件界面能带排布。与spiro-OMe TAD相比,这种D-A-D型的HTM分子具有更好的光稳定性,热分解温度提升了30oC,合成成本降低了30倍。以噻吩取代的HTM分子TQ2制备的钙钛矿太阳能电池器件取得了19.62%的光电转换效率,优于参比化合物spiro-OMe TAD(18.54%)以及苯环取代的HTM分子TQ1(14.27%)。 荧光寿命表征以及导电率测试表明噻吩取代的HTM分子有更好的空穴提取和传输能力。进一步通过单晶分析发现TQ2分子间存在S---S以及S---π相互作用,缩短了分子间三苯胺单元的距离,增加了空穴传输通道。该工作为设计低成本、高性能的钙钛矿太阳能电池空穴传输层提供了新思路,成果已在线发布于《Chemical Science》。 6、北京理工大学:高效率钙钛矿太阳能电池中有机小分子空穴传输材料研究取得进展 5月22日消息,北京理工大学前沿交叉科学研究院崔彬彬特别副研究员课题组与陈棋教授课题组合作,在高效率钙钛矿太阳能电池中有机小分子空穴传输材料的研究取得新进展,设计合成了分别以“邻二噻吩苯”和“萘并双噻吩”为核心π-bridge的两种低成本三芳胺类衍生物PBT和NDT,并将在这两种Donor-π-Donor构型的有机小分子作为空穴传输层材料应用于钙钛矿太阳能电池器件中,是有潜在应用价值的钙钛矿太阳能电池空穴传输材料。 在同样条件下,基于PBT的PSCs器件达到的最大光电转换效率为13.6%,而以相对于PBT具有更好平面共轭特征的NDT作为空穴传输层的PSCs器件最优光电转换效率可达到18.8%。相关工作已发布于《Journal of Materials Chemistry A》。 7、湖南大学:新型钙钛矿太阳能电池材料研究取得进展 4月25日消息,湖南大学材料科学与工程学院杨斌教授和合作者们运用美国橡树岭国家实验室的大科学装置“散裂中子源”高分辨单晶中子衍射,解析了杂化钙钛矿材料CH3NH3PbBr3在不同温度下的结构,观察到有机组分CH3NH3+随温度升高从有序到无序的转变过程,揭示了分子取向及排列变化可以诱导CH3NH3PbBr3钙钛矿的结构相变和反常光致发光效应。 该工作表明,有机组分的取向和翻转可以显著影响杂化钙钛矿材料的微观结构和宏观光电性质。这项研究成果将为今后设计和开发新型高性能钙钛矿型光伏材料,从而提高钙钛矿太阳能电池的能量转换效率和长期稳定性提供科学依据。相关工作已发布于《Advanced Materials》。 8、西安交通大学:锡基非铅钙钛矿太阳能电池光电转换效率达6.98% 3月30日消息,西安交通大学电信学院吴朝新教授团队采用蒸镀旋涂的方式,以及发展了一种对电池器件结构的双侧界面调控方法,同时实现了高质量二维-三维异质结锡基非铅钙钛矿薄膜和高效率、高稳定性的电池器件。器件的光电转换效率高达6.98%,位于国际锡基非铅钙钛矿太阳能电池最高效率之列。 该工作基于之前的工作基础取得锡基钙钛矿太阳能电池6.98%的光电转换效率,为环境友好非铅钙钛矿太阳能电池的应用做了重要贡献。相关工作已发布于《ACS Energy Letters》。 9、山东大学:制备出高效稳定的无机钙钛矿CsPbI3太阳能电池 3月30日消息,山东大学尹龙卫教授团队在钙钛矿太阳能电池领域取得重要进展,通过表面钝化工程的方法制备高效稳定的无机钙钛矿CsPbI3太阳能电池,解决了立方相无机钙钛矿材料常温下无法稳定存在的学术难题。相关工作已发布于《Nature Communications》。 该结果开创了制备室温稳定的立方相无机钙钛矿的新方法,为理解和研究无机钙钛矿相结构稳定性提供了理论指导,对于推动高效稳定的钙钛矿太阳能商业化应用与发展具有重要意义。 10、北京大学:在有机/无机杂化钙钛矿太阳能电池界面调控方面取得进展 1月17日消息,北京大学新材料学院孟鸿教授课题组在有机/无机杂化钙钛矿太阳能电池界面调控方面取得重要进展,通过简单的季胺化反应得到新型界面修饰材料Phen-I。进一步的器件性能研究表明5%Phen-I:PCBM作为电子传输层时性能最高,并证明Phen-I是具有双功能性的界面材料。 通过进一步对钙钛矿活性层的优化,孟鸿教授课题组取得了19.27%的光电转换效率。这种高效地双功能性界面材料也有望进一步推广应用于其他有机半导体器件中。相关研究成果已发布于《Nano Energy》。 以上以研究成果发布时间为倒序,排名不分先后。
  • 《【Nature Energy】对全固态锂电池性能的可重复性进行基准测试》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-09-25
    • 迄今为止,固态电池的研究还没有统一的标准,而固态电池也将长期用于电动汽车——尽管全球在这一领域投入了数十亿美元。拜罗伊特大学的研究人员已经确定了这一现象的原因,并将其发表在杂志上。 与传统的锂离子电池相比,固态电池或全固态电池(ASSB)有望显著提高能量密度。 因此,它们被认为是未来电动汽车的储能系统。 然而,在电池研究中,固态电池电池的验证还没有标准化的协议。 当结果公布时,人们往往不清楚这些结果是否与其他研究小组的结果具有可比性。 因此,必须建立电池测试的可重复性和可比性起点,以便能够可靠地评估该技术的创新。"我们每周至少会听到一次电池性能的新突破,这将彻底改变电动汽车或整个能源存储。 拜罗伊特大学巴伐利亚电池技术中心(BayBatt)电化学系主任 Nella M. Vargas-Barbosa 教授博士报告说:"在许多情况下,这是因为它们无法在原始实验室之外进行复制。  在这项研究中,研究人员测量了简单测试电池特性的实际差异:21 个在固态电池领域拥有研究和行业公认专业知识的研究小组获得了相同的电池材料和预定义的电化学测试程序,但每个小组都使用自己的电池组装方法和单独的非标准化测量技术。 原文链接:: Sebastian Puls et al, Benchmarking the reproducibility of all-solid-state battery cell performance, Nature Energy (2024). DOI: 10.1038/s41560-024-01634-3. www.nature.com/articles/s41560-024-01634-3