《城市环境所在植物特性调控叶际微生物组方面获进展》

  • 来源专题:生物育种
  • 编译者: 姜丽华
  • 发布时间:2023-04-13
  • 近日,中国科学院城市环境研究所朱永官团队以冰川退缩迹地自然发育的植被演替序列为研究对象,采用高通量测序和高通量荧光定量技术,探索植物群落演替过程中叶际抗生素抗性基因的变化模式。相关研究成果以Phyllosphere antibiotic resistome in a natural primary vegetation across a successional sequence after glacier retreat为题,发表在Environment International上。

      抗生素抗性基因(ARGs)的传播已对人类健康构成威胁。尽管植物叶际代表了一个重要的微生物库,但人们对人类干扰较少的自然生境中ARGs的分布和驱动因素知之甚少。因此,科研人员收集了植被演替序列中的早期、中期和晚期的植物叶片样本,以探讨植物叶际ARGs在自然生境中分布概况。该研究测定了植物圈ARGs、细菌群落和叶片营养物含量,以评估它们对植物圈ARGs的贡献。研究确定了151种独特的ARGs,涵盖了几乎所有公认的主要抗生素类别。研究进一步发现,在植物群落演替过程中,由于植物群落生境的波动和植物个体的特定选择效应,植物叶际ARGs存在一些随机性和核心组。在植物群落演替过程中,由于植物叶际细菌多样性、群落复杂性和叶片营养成分的减少,ARGs丰度明显下降。而土壤和落叶之间的密切联系导致落叶中的ARGs丰度高于鲜叶。研究显示,自然环境中的植物叶际蕴藏着广泛的ARGs。这些植物圈ARGs分布由各种环境因素驱动,包括植物群落组成、宿主叶片特性和植物圈微生物组。

      研究工作得到国家自然科学基金的支持。

  • 原文来源:https://www.cas.cn/syky/202304/t20230407_4883398.shtml
相关报告
  • 《遗传所在化合物对根系微生物组调控规律方面获新进展》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-04-08
    • 根系微生物组在植物表现出的强大适应性当中扮演着重要的角色。植物在根系招募种属特异性的大量且种类繁多的微生物,这些微生物能够参与植物吸收营养、抵抗疾病和非生物胁迫等重要生理过程。中国科学院遗传与发育生物学研究所,中国科学院-英国约翰英纳斯中心植物和微生物科学联合研究中心白洋研究组与John Innes Centre Anne Osbourn研究组合作,于2019年5月10日在Science上发表的文章,揭示了拟南芥三萜类化合物对根系微生物组的调控规律。 该工作系统地解析了拟南芥中形成基因簇的三萜合成遗传网络。该网络的关键基因在植物根系特异表达,并具有潜力合成50多种未知的根系化合物(目前能稳定检测到的根系化合物大约300种)。与不能合成三萜的水稻和小麦相比,52%拟南芥特异的根系微生物组被三萜合成基因显著调控。通过分离培养的细菌资源库与纯化/合成的单种或混合化合物共培养,发现三萜化合物直接调控特异的根系细菌种类。同时根系细菌可以特异性修饰和利用拟南芥三萜化合物。该研究为利用植物天然化合物促进根系益生菌在绿色农业中的应用提供了理论依据。
  • 《微生物所叶健团队揭示红光调控植物抗虫媒病毒新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-01-13
    • 病害三角(disease triangle)是描述疾病流行规律的理论,该理论指出“病害三要素”为致病病原生物、易感宿主和适合的环境条件三者相互作用才能引起侵染性病害。已知超过1480种植物病毒中,近80%由媒介昆虫传播,植物虫传病毒是制约我国农作物高产稳产的主要因素之一。以往作物病毒病害的研究注重于病毒和植物宿主两个方面,而实际上参与病毒传播、病害发生的因子还有传毒媒介昆虫以及光照、温度、气候、生物周期节律等环境因子。作为人类赖以生存的最重要生化反应,植物光合作用主要吸收红光和蓝紫光并存储为化学能,最终为人类和其他动物提供必需的食物和能量。光作为主要的环境因子,不仅调控植物生长发育的每个环节,而且同病害的流行爆发紧密相关。然而光是如何影响植物抗病性,病原微生物又是如何适应宿主抗性机制从而促进自身的传播等问题,尚亟待得到科学解答。 近日,中国科学院微生物所叶健课题组在PLoS Pathogens在线发表了题为Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly的研究论文。该研究发现植物双生病毒卫星DNA编码的βC1蛋白可以通过靶向光信号途径的PIF转录因子家族调控的虫媒病毒抗性,促进虫媒病毒的快速传播,揭示了光调节双生病毒-烟粉虱-植物三者互惠共生的新机制。   本研究在前期工作的基础上,进一步以双生病毒中国番茄黄化曲叶病毒TYLCCNV与卫星DNA形成的侵染复合物为研究对象,发现双生病毒卫星感病植物和对媒介昆虫烟粉虱的吸引作用只有在光照条件下才会发生,而在黑暗条件下不会发生(图1A和1B)。已有研究表明βC1是病毒编码的关键决定因子,进一步利用单色光LED灯箱进行昆虫双选择实验,发现βC1转基因植物只有在红光和含有红光的白光条件下发生,而在黑暗、远红光和蓝光条件下没有显著差异 (图1C)。烟粉虱等大多数昆虫的视觉系统缺乏红光受体,是“红色色盲”,所以这种光依赖的烟粉虱选择行为改变主要是病毒感染植物后影响了昆虫嗅觉识别植物。 当植物受到昆虫取食后,会产生一系列的化学挥发物来调控昆虫的行为来趋避食草昆虫,其中萜烯类化合物 (Terpenes) 是植物挥发物中最丰富的一类化合物,研究报道部分倍半萜和单萜会趋避昆虫。该研究通过酵母双杂交筛选实验鉴定到光信号中的关键蛋白光敏色素互作蛋白 (PHYTOCHROME-INTERACTING FACTOR 3, PIF3) 可以与βC1蛋白互作,进一步Co-IP实验证明PIF3与βC1在光照和黑暗条件下均可以在植物体内互作 (图2A)。PIFs蛋白可以直接结合萜烯合酶 (Terpene synthase,TPS) 基因的启动子促进其转录 (图2B和2C),因此在PIF过表达的植物中,介体昆虫烟粉虱的产卵量减少、伪蛹发育缓慢 (图2D和2E),说明PIFs蛋白具有直接的抗虫作用。通过竞争性BiFC和pull-down实验发现βC1蛋白可以通过干扰PIF蛋白二聚体的形成不同程度的抑制其转录激活活性 (图2C)。 植物激素茉莉酸(jasmonic acid, JA)是一种介导植物抗虫的重要激素,转录因子MYCs是JA途径中的关键调控因子。MYC家族转录因子调控下游多种抗虫相关次生代谢物质的合成代谢相关基因,包括TPS基因。该课题组早期研究发现双生病毒βC1可以靶标MYC2, 通过干扰其二聚体的形成抑制MYC2-介导植物抗虫反应,与其媒介昆虫烟粉虱形成的互惠共生关系(Li et al. Plant Cell 2014)。PIF蛋白参与植物多个信号通路以参与发育过程以及不同的胁迫响应,包括光和JA途径。研究报道AtPIF4与AtMYC2相互作用,该研究还发现AtPIFs-AtMYC2的互作在一定程度上抑制了TPS基因的表达,而βC1可以促进AtPIF4-AtMYC2异源二聚体的互作进而进一步抑制TPS的表达,促进昆虫的取食。结合以上研究结果该论文提出以下工作模型:在健康植物中,PIFs和MYC2形成同源二聚体,结合在TPS基因启动子的不同区域,共同调节TPS基因表达,从而趋避烟粉虱;当植物受到双生病毒感染后,βC1一方面可以抑制PIFs或MYC2同源二聚体的形成,一方面又可以促进PIF- MYC2异源二聚体的形成,最终抑制了植物对烟粉虱的抗性反应,促进烟粉虱的取食,促进病毒的传播与扩散。本研究解析了光和JA信号共同调节病毒-昆虫-植物三者互作的新机制,为防控虫媒病害提供新的靶点,也为实现利用单色LED灯绿色防控双生病毒病害提供理论依据。 该文章由叶健课题组的副研究员赵平芝、助理研究员张璇和已毕业硕士研究生龚雨晴为共同第一作者,课题组王端、王宁、孙艳伟、高连博为文章的共同作者。值得一提的是,该研究得到了方荣祥院士、北京大学邓兴旺院士、美国加州大学戴维斯分校Daniel J. Kliebenstein教授、中国农业科学院植物保护研究所周雪平教授、南京农业大学教授许冬清、浙江大学刘树生教授的大力支持,也为该文的共同作者,叶健研究员为通讯作者。感谢清华大学陈浩东教授和中国农业大学李继刚教授提供了宝贵的抗体材料。该研究受到国家自然科学基金重点项目、国家重点研究和发展计划生物安全专项、国家相关人才计划等项目的支持。