2024年5月22日,四川大学华西医院生物治疗全国重点实验室张祯威研究员与德国马克思普朗克多学科交叉所Holger Stark,Reinhard Lührmann课题组合作在Nature上在线发表了题为Structural insights into the cross-exon to cross-intron spliceosome switch的研究成果,揭示了跨外显子剪接体转化为跨内含子剪接体的具体分子机制,并提出了全新的人类剪接体组装模型,挑战了基于酵母研究的经典认知。
该研究首先纯化了跨外显子组装的剪接体,并通过单颗粒冷冻电镜手段揭示了其三维结构。研究者发现跨外显子组装的剪接体停留在了包含所有5个snRNP的pre-B复合体阶段。该复合体除了U1snRNP的位置不同以外,其中的U2-tri-snRNP部分与先前发表的跨内含子组装的pre-B复合体相似。通过外源引入包含5端剪接位点的低聚核苷酸(5'ss oligo),该跨外显子pre-B复合体可被转化为类似跨内含子的B复合体(B-like 复合体),再次证明跨外显子和跨内含子和组装的pre-B复合体在结构和功能上具有相似性。基于这一发现,作者在体外重构了pre-B到B-like复合体的中间状态,并通过单颗粒冷冻电镜手段揭示这些中间状态的三维结构。这五个全新的剪接体中间状态完整揭示了由跨外显子pre-B复合体转变为跨内含子B复合体的分子过程。
出乎意料的是,在研究过程中,研究人员发现跨外显子组装的pre-B复合体可以形成前所未见的二聚化状态,且在二聚化剪接体中,每个pre-B复合体可以与另一个pre-B复合体的U1 snRNP相结合,并通过依赖ATP的方式,稳定结合彼此的5端剪接位点(5' splice site, 5'ss)。该结果表明了在跨外显子到跨内含子转变过程中,pre-B复合体中的tri-snRNP可以直接和一个结合5’ss的U1snRNP互作,并转化为跨内含子剪接体。
基于此,研究者提出了全新的人类剪接体组装模型。首先,外显子序列招募SR蛋白并促进外显子两端U2和U1 snRNP的结合,形成跨外显子复合体。随后tri-snRNP被招募到U2 snRNP,形成跨外显子pre-B复合体。该复合体具有完整组装的U2-tri-snRNP部分,并准备结合U1 snRNP。而剪接产物取决于随后被tri-snRNP结合的U1 snRNP。1. 若内含子5‘端的U1 snRNP被结合,跨外显子复合体转变为跨内含子复合体,移除内含子介导经典剪接;2. 若更为上游外显子的U1 snRNP被结合,跨外显子复合体转变为跨内含子复合体,并跳过中间的外显子;3. 若下游的U1 snRNP被结合则介导反向剪接,形成环状RNA (circRNA);4. 若来自另一个转录本的U1 snRNP被结合,则介导反式剪接 (trans-splicing)。
总之,该研究提出全新的人类剪接体组装模型将经典剪接、可变剪接、反向剪接、反式剪接这些看似不相关且复杂的剪接调控机制统一到了同一框架下,为研究pre-mRNA剪接调控研究提供了新的范式。