《Cell | Xist 核糖核蛋白促进女性性别偏向的自身免疫》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-02-03
  • 2024年2月1日,斯坦福大学医学院等机构的研究人员在Cell发表题为Xist ribonucleoproteins promote female sex-biased autoimmunity的文章。

    自身免疫性疾病对女性的影响不成比例地大于男性。XX性染色体补体与自身免疫的易感性密切相关。Xist 长链非编码 RNA (lncRNA) 仅在女性中表达,以随机灭活两条 X 染色体中的一条以达到基因剂量补偿。

    该研究表明包含许多自身抗原成分的 Xist 核糖核蛋白 (RNP) 复合物是性别偏向自身免疫的重要驱动因素。在雄性小鼠中诱导性转基因表达的非沉默形式的 Xist 引入了 Xist RNP 复合物并足以产生自身抗体。表达转基因Xist的雄性SJL/J小鼠在pristane诱导的狼疮模型中比野生型雄性小鼠出现更严重的多器官病理学。雄性中的Xist表达重新编程了T细胞群和B细胞群以及染色质状态,使其更类似于野生型雌性。患有自身免疫性疾病的人类患者对 XIST RNP 的多种成分表现出显着的自身抗体。因此,性别特异性 lncRNA 支架搭载无处不在的 RNP 成分,以驱动性别偏向免疫。

相关报告
  • 《广谱抗crispr蛋白促进基因水平转移》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2020-05-22
    • CRISPR-Cas适应性免疫系统保护细菌和古生菌免受其入侵的遗传寄生虫,包括噬菌体/病毒和质粒。针对这种免疫反应,许多噬菌体具有抗crispr (Acr)蛋白质,可以抑制CRISPR-Cas靶向。迄今为止,抗crispr基因主要是在噬菌体或噬菌体基因组中发现的。在这里,我们使用李斯特菌吖啶1基因作为标记,在厚壁菌门中发现了质粒上的acr位点和其他结合元素。在李斯特菌、肠球菌、链球菌和葡萄球菌基因组中发现的四种基因可以抑制ii型- a SpyCas9或SauCas9,因此被命名为acrIIA16-19。在粪肠球菌中,来自肠球菌偶联元件的抗crisprs增强了cas9靶向质粒的偶联,突出了Acrs在质粒传播中的作用。相互免疫共沉淀显示,每个Acr蛋白与Cas9相互作用,Cas9 - Acr复合物无法裂解DNA。Northern blotting表明,这些抗crisprs操纵单导RNA的长度、装载量或稳定性。与它们在细菌中的活性相对应,AcrIIA16和AcrIIA17对人类细胞中不同的Cas9蛋白(例如SpyCas9、SauCas9、SthCas9、NmeCas9和CjeCas9)提供了强大而高效的广谱抑制。这项工作集中分析了非噬菌体Acr蛋白,证明了在宽谱CRISPR-Cas9抑制的支持下,在水平基因转移中的作用。
  • 《Cell | WDR11 复合物是含有酸性簇的货物蛋白的受体》

    • 编译者:李康音
    • 发布时间:2024-07-19
    • 2024年7月15日,四川大学华西医院贾大、苏昭铭团队在 Cell 期刊发表了题为The WDR11 complex is a receptor for acidic-cluster-containing cargo proteins 的研究论文。该研究揭示了首个可以识别特定货物蛋白基序的囊泡栓系复合物——WDR11复合物,并解析了其高分辨率结构及功能,发现对货物蛋白的选择可以发生在囊泡运输的后期,以进一步提高运输保真度。 从内体到反式高尔基体网络(TGN)的囊泡运输过程,也称为逆向运输,对于广泛的生理功能至关重要,包括营养摄取、细胞信号传导和神经元发育。已知多种蛋白质能够识别通过内体转运的货物蛋白胞质结构域中的特定信号,包括网格蛋白相关衔接蛋白1复合物(AP-1)、retromer、retriever以及分选连接蛋白(SNX)家族的若干成员。AP-1 能够识别跨膜蛋白胞质尾部的各种分选信号,包括基于酪氨酸、基于双亮氨酸和酸性簇基序,从而将它们分选到网格蛋白包被囊泡(CCV)中。 已知有几种蛋白质包含酸性簇基序,包括CI-MPR、CPD、弗林蛋白酶和 KIAA0319L。最近有报道WDR11复合物在AP-1复合物的下游起作用,并促进含酸性簇的蛋白质向反式高尔基体网络(TGN)的运输。在真核生物中,WDR11复合物由WDR11和FAM91A1亚基组成,在脊椎动物中还有第三个亚基C17orf75。WDR11复合物位于TGN和囊泡上,并且可能通过其与高尔基体定位的蛋白TBC1D23的相互作用有助于囊泡的栓系。 虽然WDR11在含酸性簇蛋白运输中的作用已被广泛接受,但目前尚不清楚WDR11复合体是如何精确调控这种运输的。 强调逆行运输重要性的是这样一种观察结果——参与这一过程的多种蛋白质的突变会导致神经障碍。例如,AP-1的s1A和s1B亚基的突变分别是MEDNIK综合征和Fried/Pettigrew综合征的病因,此外,TBC1D23被确定为桥脑小脑发育不全(PCH)的一个病因。有趣的是,最近的临床报告描述了WDR11功能缺失突变也会导致与PCH高度相似的疾病的病例。此外,WDR11的突变还与其他疾病有关,例如先天性促性腺激素性性腺功能减退症、卡尔曼综合征和10q26缺失综合征。AP-1和WDR11在感染期间都会被一部分病毒所破坏。例如,HIV-1通过其辅助蛋白Nef劫持AP-1,促进主要组织相容性复合物I(MHC-I)的降解,从而促进免疫逃避。此外,单纯疱疹病毒(HSV)和人类巨细胞病毒(HCMV)会利用 WDR11,帮助建立病毒粒子组装区室。但总体来说,迄今为止,WDR11相关疾病的病因仍知之甚少。 在这项最新研究中,研究团队报道了人WDR11-FAM91A1复合物的单体和二聚体冷冻电镜结构,分辨率分别为3.1埃和3.2埃。WDR11直接且特异性地识别一部分酸性簇(acidic cluster),研究团队称之为超级酸性簇(super acidic cluster,SAC)。WDR11复合物的组装及其与含SAC蛋白质的结合对于含SAC蛋白质的运输和斑马鱼的正常神经元发育是不可或缺的。因此,该研究揭示了货物蛋白可以在蛋白质包被的下游以序列特异性的方式被识别。 总的来说,该研究阐明了WDR11复合物的高分辨率结构及功能,并发现对蛋白货物的选择可以发生在囊泡运输的后期,以进一步提高运输保真度。