《宁波材料所在石墨烯/高分子导热复合材料方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-03-31
  • 首页>新闻中心>科研进展. . 相关文档. . 宁波材料所在石墨烯/高分子导热复合材料方面取得新进展. 作者:,日期:2017-03-24 .   随着半导体制造技术的不断进步和电子工业的不断发展,电子设备的散热问题日益受到关注,越来越多的导热材料被应用于携带型装置、电子设备和能源领域。高分子聚合物是经常用于电子设备制造和集成电路封装的材料,但是高分子本身热导率不高,一般低于 0.5 W/m·K ,不能满足高功率电子装备的应用需求。针对这一缺点,本征热导率高的石墨烯已被广泛利用作为纳米填料与高分子共混,形成复合材料,以提高整体热导率。然而,共混法制备的复合材料对于热导率的提升效果十分有限,因此,在高分子基底中构建具有导热连续网络的三维石墨烯结构是解决这一问题的有效手段。   中国科学院宁波材料所表面事业部功能碳素材料团队开发了一种低成本、工艺简单、且能大规模应用的石墨烯 / 高分子高导热复合材料的制备方法,将高分子粉体表面均匀包裹上石墨烯纳米片,再通过热压制备成复合材料。通过此工艺,石墨烯能在高分子基底中形成了胞室状的...

相关报告
  • 《宁波材料所在高分子复合材料3D打印方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-05-10
    • 随着科技的不断发展进步,3D打印技术作为一种全新的数字化模拟制造技术应运而生并迅速发展。其中,熔融沉积技术具有设备简单、工艺洁净、运行成本低且不产生过多加工残留物等优点,被广泛应用于快速原型和教育等领域。但现有的熔融沉积材料主要以ABS和PLA等通用塑料为主,需要针对工业产品制造开发适合高强度工程塑料等材料的3D打印成型技术。 中国科学院宁波材料技术与工程研究所增材制造重点实验室许高杰团队针对高性能工程塑料3D打印技术开展了一系列研究工作。选取了具有高坚韧度和抗疲劳特性的半晶态尼龙12和高强度聚醚酰亚胺作为基体,研究了熔体流变特性对熔融长丝烧结特性的影响,对高性能工程塑料的3D打印工艺参数、工业可用性进行了研究。研究发现,半结晶高分子具有较好的流变性能和快速烧结特性,在合适的打印条件下能够获得接近注塑件的力学性能。拓展了高温高强度工程塑料在熔融沉积技术中的应用(Rapid Prototyping Journal, 2017, 23(6), 973–982. High Performance Polymers, 2019, 31(1): 97-106.)。 由于熔融沉积层层叠加成型过程产生的空隙会不可避免地降低3D打印产品的机械强度,严重制约了熔融沉积技术的应用推广。研究人员在工艺研究的基础上,开发了尼龙12/氧化石墨烯、尼龙12/碳纤维复合材料。研究发现两种填料在熔融沉积成型过程中可实现取向分布,不仅有效提高了产品的机械强度(GNPs 7%和CFs 251.1%),还能够对产品热导率(提高51.4%)进行灵活调控。(Journal of Applied Polymer Science, 2017, 134(39), 45332.; Materials & Design, 2018, 139: 283-292.)。 最近,研究人员以聚乳酸(PLA)为基体,以热塑性聚氨酯(TPU)为填料,通过熔融沉积技术的整个加工流程实现了弹性体TPU原位成纤,纤维状TPU的平均长度可以实现从67.24μm到103.72μm的精准调控。同时,TPU成纤有效改善了其与PLA基体的界面结合力。研究发现,3D打印形成的网格状TPU可有效补偿打印空隙对打印件力学强度的弱化效应,使产品的韧性达到甚至超过注塑水平。该熔融沉积原位纤维技术为制备高韧性聚乳酸复杂结构零件提供了简便有效的方法(Macromolecular Materials and Engineering, 2019, 1900107)。 以上工作得到了国家自然科学基金(11574331, 11674335)和宁波市科技局(2016B10005, 2018A610009)的资助。
  • 《宁波材料所在高分子水凝胶驱动器方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-09-18
    • 在亿万年的自然演化中,一些生物体逐渐发展出体色、形态等随环境变化的能力。其中,最典型的例子就是变色龙:它能够根据外部环境或情绪心理的变化来快速改变肤色,以达到伪装或交流的目的。研究表明,变色龙的皮肤具有特殊的多层色素细胞构造,环境或情绪的变化会诱导皮肤肌肉运动,改变皮肤多层色素细胞的分布,进而实现多样化的身体颜色变化。这一有趣的生物体变色现象启发科学家们构建了多种基于高分子薄膜和弹性体的智能仿生软体机器人,这些具有变色功能的伪装机器人在自然环境中表现出类生物体的行为,不易被识别和破坏,因而在海洋探索、生物学研究、环境考察等方面应用前景巨大。相较于高分子薄膜和弹性体,高分子水凝胶具有与生物组织相当的模量及软、湿等特性,可能更加适宜于变色软体机器人的构建。因此,如何通过各向异性高分子水凝胶的组成结构设计,实现驱动与智能荧光色变等功能的协同来构建具有变色功能的水凝胶驱动器,就成为我们格外关注的关键问题。   近年来,中国科学院宁波材料技术与工程研究所智能高分子材料课题组陈涛研究员和路伟副研究员在智能荧光高分子水凝胶的分子设计及材料构建方面开展了大量的基础研究工作(Adv. Funct. Mater. 2019, 1905514; ACS Macro Lett. 2019, 8, 937; Sci. China Mater.2019, 62, 831; ACS Sensors 2018, 3, 2394; Adv. Mater. Technol. 2018, 1800201; J. Phys. Chem. C 2018, 122, 9499; Macromol. Rapid Commun.,2018, 39, 1800648; Macromol. Rapid Commun.2018, 39, 1800130; ACS Appl. Mater. Interfaces 2017, 9, 23884)。基于以上研究,该团队在2018年通过苝酰亚胺功能化荧光高分子水凝胶和氧化石墨烯杂化聚异丙基丙烯酰胺水凝胶功能模块的超分子宏观组装,初步实现了复杂形变和智能荧光性能的协同(Adv. Funct. Mater. 2018, 1704568)。然而,尽管这种高分子驱动器同时兼具复杂变形和“开-关”荧光功能,它却只能发出一种荧光颜色(黄色),远远落后于自然界中的变色龙等可显示丰富多彩肤色变化的生物体。   近日,该团队在Angew. Chem. Int. Ed. 上报道了一种兼具3D复杂形变-智能色变功能的多色荧光高分子水凝胶驱动器(图1),题为“Bioinspired Synergistic Fluorescence-Color Switchable Polymeric Hydrogel Actuator”(DOI: 10.1002/anie.201908437)。在该工作中,研究人员从多色荧光单体分子设计的源头出发,合成了一种含有吡啶羧酸盐配体的单体6APA,其与N-异丙基丙烯酰胺(NIPAM)、甲双叉丙烯酰胺经自由基聚合制备的温敏性高分子水凝胶(PNIPAM-K6APA)的荧光强度很弱,但稀土铕(Eu3+)和铽离子(Tb3+)的分别掺杂会诱导吡啶羧酸盐配体的能量转移,进而发出明亮的红色和绿色荧光,进一步地,可以通过不同比例铕和铽离子与吡啶羧酸盐配体的竞争配位作用的调控来获得红色和绿色相叠加的多色荧光。该荧光水凝胶具有丰富的刺激响应性,酸碱、竞争配位阴/阳离子等的刺激都会改变其荧光颜色(图2)。基于这一智能荧光色变原理,研究人员以温敏性PNIPAM-K6APA为主动层、称量纸为被动层构建了一种各向异性荧光高分子水凝胶驱动器。如图3所示,在碱和温度的交互刺激下,一对分别基于红色荧光Eu-PNIPAM-K6APA和绿色荧光Tb-PNIPAM-K6APA驱动器的仿生变色龙表现出协同的肤色变暗和身姿形变,模仿出变色龙在意欲发动攻击时心理情绪变化诱导的肤色变暗现象;类似地,在铽离子和温度的交互刺激下,基于红色荧光Eu-PNIPAM-K6APA驱动器的仿生变色龙表现出与协同的身姿形变和“红转黄绿”肤色改变,初步模仿出变色龙在环境变化诱导下的皮肤颜色变化多样性(图4)。   在该工作中,研究人员通过各向异性多色荧光高分子水凝胶驱动器的组成结构设计,协同利用竞争配位调控的荧光色变和温度控制的形状改变,制备了一种具有类变色龙行为的高分子水凝胶基软体机器人。尽管现在的变色软体机器人在结构设计和功能展示上还比较粗糙,但这一成功实例证明了变形变色等多功能协同的软体机器人的可行性,为未来多功能软体机器人的开发和应用奠定了基础。   以上工作得到了国家自然科学基金(21774138, 51773215, 51873223)、中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH036)、中国科学院青年创新促进会(2019297, 2017337)、中国科学院海洋新材料与应用技术重点实验室开放基金(2018K02)等项目的资助。