《高能量重复频率钕玻璃激光器的热效应实验研究》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-11-16
  • 超强超短激光具有广泛的应用前景,是当今国际科技竞争重大前沿领域之一。啁啾脉冲放大(CPA)和光学参量啁啾脉冲放大(OPCPA)是目前获得超强超短激光脉冲的两大技术途径,其中CPA技术具有转换效率高、输出稳定可靠、对泵浦源要求较低等优点,是研制数拍瓦甚至10PW激光用户的首选方案。上海光机所承建的“上海超强超短激光装置”(SULF)采用CPA技术路线,结合了高对比度预放大前端与终端大口径钛宝石啁啾脉冲放大器,在2017年底率先实现了国际上首例峰值功率为10PW量级的激光脉冲输出。

    在SULF 10PW激光原型装置中采用大口径钕玻璃片状放大器泵浦终端钛宝石晶体,实际实验中终端钛宝石放大器的泵浦-信号转换效率相对较低只有约32%。泵浦源系统两小时一发的重复频率导致整个激光系统性能难以进行有效优化,同时也影响了该系统用于服务物理实验的运行效率。因此,上海光机所在SULF 10PW激光用户装置系统中采用了时域多脉冲泵浦的技术方案解决上述两个问题。

    时域多脉冲泵浦方案将原单路高能量的泵浦脉冲替换为多台百焦耳重复频率钕玻璃激光器输出的泵浦小脉冲,以此达到主动控制钛宝石多通放大器每一程中横向增益的目的。每台百焦耳重复频率钕玻璃激光器由两个放大链路组成,每路放大链由两级Φ10mm口径棒状Nd:YLF放大器、两级Φ25mm口径钕玻璃棒状放大器以及两级Φ50mm口径钕玻璃棒状放大器组成。种子源为输出波长1053nm、单脉冲能量3mJ、脉冲宽度16ns、频率1Hz的种子光,经过多次像传递扩束及能量放大,最终单路放大器链输出的基频光单脉冲能量约为80J,两路基频光偏振合束后通过二类LBO倍频器最终输出能量约为100J的倍频光,钕玻璃激光器结构图如下图所示。

    图1 百焦耳重复频率钕玻璃激光器三维结构图

    泵浦源系统的能量稳定性对于超强超短激光装置至关重要,实验针对激光器在不同重复频率条件下工作所产生的热致波前畸变进行测量,以此确定能够使系统稳定安全工作的重复频率。热效应实验采用波前探测仪进行测量,用其测量出的PtV和RMS值可反映出光束质量受热效应影响的大小。

    热效应实验分别在一分钟一发、两分钟一发以及三分钟一发的重复频率下对钕玻璃激光器进行测量,实验发现在一分钟一发的重复频率下PtV和RMS值随着工作时间增加不断提升,且在工作仅数发之后光斑出现了劣化,之后在两分钟一发的重复频率下PtV和RMS值在工作约20分钟后趋于稳定,但在工作约40分钟后出现光斑劣化。最终在三分钟一发的重复频率下钕玻璃激光器可实现稳定地连续运转,PtV和RMS值统计结果如下图所示,激光器输出的倍频光脉冲能量稳定,光斑均匀呈近平顶分布,可用于安全地泵浦主放大光路中的大口径钛宝石晶体。

    图2 PtV和RMS值统计

    目前泵浦源系统能够安全地运转于三分钟一发的条件下,未来为了进一步提升百焦耳泵浦激光器的重复频率,将会针对Φ50mm口径钕玻璃棒状放大器的水冷系统结构进行改进,最终将会使得重复频率提升至一分钟一发。

相关报告
  • 《苏州纳米所梁伟等在高重复频率窄线宽外腔激光器领域取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-10-26
    • 随着自动驾驶的发展,调频连续波激光雷达(FMCW LiDAR)受到越来越多的关注。FMCW方案使用连续扫频激光光源,原理是目标反射光与参考光在探测器混合拍频,目标距离与拍频信号频率相对应。与基于飞行时间(TOF)的脉冲 LiDAR相比,使用相干探测的FMCW LiDAR可以很好的抵抗阳光直射和其他激光雷达的干扰。FMCW激光雷达分辨率与扫频范围相关,不需要使用高带宽的器件就能实现较高的分辨率,更重要的是利用多普勒效应通过单次测量可以同时得到距离和速度信息。窄线宽线性扫频光源是FMCW LiDAR的关键器件,激光器线宽会影响探测距离和测量灵敏度,而重复频率则会影响激光雷达的点云密度。 近日,苏州纳米所梁伟研究员团队开发了线宽5.06kHz、重复频率100kHz的外腔窄线宽扫频激光器,为实现较长距离的调频连续波激光雷达测距提供了一种有效光源。 线宽测量系统装置示意图如图 1 所示,插图是封装好的激光器。利用外差干涉仪测量了激光器的线宽,20dB洛伦兹线宽为71.6 kHz,对应的激光器线宽为5.06 kHz。 通过搭建光纤干涉仪评估了该激光器的测距性能,当驱动电流重复频率1 kHz时,连续线性扫频范围超过1 GHz。增大扫频重复频率至100 kHz时,扫频范围降低到228.9 MHz,对应的自由空间分辨率为0.7129 m。从图3中可以看出,当光纤长度为156米(对应于自由空间110米反射)时,信噪比 SNR仍然高于35 dB 。 该团队利用外腔压缩激光器线宽,改变驱动电流实现频率调谐,开发了线宽5.06 kHz、重复频率100 kHz的外腔窄线宽扫频激光器,可以满足自动驾驶数百米测距的需求。最新研究成果中,通过优化调频机制,连续线性扫频范围已经达到4GHz,对应测距空间分辨率约为3.75厘米。 相关成果以“Narrow linewidth external cavity laser capable of high repetition frequency tuning for FMCW LiDAR”为题发表于国际期刊IEEE Photonics Technology Letters。中国科学院苏州纳米所为该论文第一完成单位,纳米器件研究部博士后吴映和博士生邓力华为论文共同第一作者,纳米器件研究部梁伟研究员为论文通讯作者。 以上工作得到了国家自然科学基金支持。            论文链接:https://ieeexplore.ieee.org/document/9872030/
  • 《玻璃与金属焊接新途径:超快激光器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-06
    • 来自英国赫瑞瓦特大学的科学家团队,日前通过超快激光系统,实现了玻璃和金属的焊接。这一流程可用于航空航天、国防、光学技术以及医疗保健制造业。 利用超快激光焊接方法,研究人员可以将各种光学材料(如石英、硼硅酸盐玻璃和蓝宝石)融入包括铝、钛和不锈钢等金属中。这种方法在材料熔合过程中产生非常短的皮秒红外光脉冲。 赫瑞瓦特大学激光创新制造中心主任兼教授Duncan Hand表示:“从传统意义上来讲,由于玻璃和金属的不同热性能,将玻璃和金属等不同材料焊接在一起非常困难 - 高温和高度不同的热膨胀会导致玻璃破碎。目前,涉及玻璃和金属的设备和产品通常是采用粘合剂结合在一起,这一过程很杂乱,而且粘合的部件会逐渐出现移动的现象。放气也是一个问题,因为粘合剂会不断释放出有机化学物质,这样可能会导致产品寿命缩短。” Hand指出,要焊接的部件紧密接触,激光通过光学材料进行聚焦,在两种材料之间的界面处提供非常小且高强度的点。这样一来,研究团队在一个几微米宽的区域内实现了兆瓦峰值功率,在材料内部形成了一个由高度受限的熔化区域包围的微等离子体。该团队在-50°至90°C的温度下对焊缝进行了测试,结果表明它们足够坚固,能够承受极端条件。 Hand及其团队日前正在与由英国牛津激光公司、Coherent Scotland、Leonardo以及英国古奇·休斯古公司领导的财团合作,开发激光加工系统原型,以实现该技术的早日商用。