《Nature | 睡眠不足会降低海马的再激活和重放能力》

  • 编译者: 李康音
  • 发布时间:2024-06-14
  • 2024年6月12日,密歇根大学安娜堡分校的研究人员在 Nature 期刊发表了题为Sleep loss diminishes hippocampal reactivation and replay 的研究论文。

    我们的记忆力会在睡眠期间得到增强,海马体是大脑的记忆中心,而海马体尖波涟漪(sharp-wave ripple,SWR)期间觉醒体验的激活和重放被认为是记忆力得到增强的关键。睡眠不足会损害记忆力,然而,我们对于睡眠不足是如何影响这一过程的,仍知之甚少

    该研究发现,在睡眠不足时,一个与长期记忆有关的关键大脑信号——海马体的尖波涟漪,会被减弱,这有助于解释为什么睡眠不好会扰乱记忆形成,经过一夜糟糕的睡眠后,即使恢复正常睡眠,也不足以修复这一大脑信号。这项研究可能会带来改善记忆的靶向治疗方法。


相关报告
  • 《Nature | 大脑感知、激活和抑制全身炎症的机制》

    • 编译者:李康音
    • 发布时间:2024-05-06
    • 2024年5月1日,哥伦比亚大学Charles S. Zuker、Hao Jin共同通讯在Nature发表题为A body–brain circuit that regulates body inflammatory responses的文章,揭示了一种有效调控炎症反应的体-脑回路。 研究人员证明,外周免疫损伤,如脂多糖(LPS)给药,可以有效激活脑干内孤束尾核(caudal nucleus of the solitary tract, cNST)的神经元。值得注意的是,沉默这些LPS激活的cNST神经元会导致不受控制的炎症反应加剧,其特征是促炎细胞因子的急剧增加和抗炎介质的减少。相反,激活这些神经元可以抑制炎症,降低促炎细胞因子水平,同时增强抗炎反应。 通过单细胞RNA测序和功能成像实验,作者确定了表达多巴胺β羟化酶(dopamine beta-hydroxylase, DBH)的特定群体的cNST神经元是该免疫调节回路中的关键参与者。这些DBH+神经元的清除或激活分别再现了失调或抑制的炎症反应,突出了它们在维持免疫稳态中的关键作用。但是,大脑是如何感知和应对周围炎症的呢?作者证明了迷走神经感觉神经元的不同群体对促炎和抗炎细胞因子有选择性的反应,并将这些信息传递给cNST DBH+神经元。具体而言,TRPA1+迷走神经神经元对抗炎细胞因子IL-10有反应,而CALCA+神经元被促炎信号激活。值得注意的是,激活这些迷走神经群体模拟了直接调节cNST DBH+神经元的效果,强调了它们在神经免疫回路中的功能整合。 这一发现的治疗潜力是惊人的。在溃疡性结肠炎模型中,激活TRPA1+迷走神经神经元或cNST-DBH+神经元保护小鼠免受致命的LPS诱导的内毒素血症的影响,并改善疾病的严重程度。相反,这种回路的持续激活削弱了宿主清除细菌感染的能力,凸显了最佳免疫功能所需的微妙平衡。 这项开创性的工作揭示了一种以前未被重视的监测和调节炎症反应的体脑回路。通过确定关键的神经元参与者及其功能作用,作者为理解大脑如何调节免疫提供了一个框架,并为从自身免疫疾病到细胞因子风暴和感染性休克等一系列免疫疾病的治疗干预提供了令人兴奋的新途径。这一神经免疫轴的发现为我们理解神经系统和免疫系统之间复杂的相互作用开辟了一个新的前沿,为进一步探索免疫调节的神经回路及其开发新的免疫调节疗法的潜力铺平了道路。
  • 《Science | 筑巢的帽带企鹅通过几秒钟的微睡眠积累了大量的睡眠》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-12-04
    • 2023年11月30日,法国里昂神经科学研究中心P.-A. Libourel及韩国极地研究所W. Y. Lee共同通讯在Science 在线发表题为Nesting chinstrap penguins accrue large quantities of sleep through seconds-long microsleeps的研究论文,该研究发现筑巢的帽带企鹅通过几秒钟的微睡眠积累了大量的睡眠。 动物在清醒状态下适应环境的能力取决于睡眠,这种脱离环境的状态被认为对大脑具有恢复功能。随着清醒时间的增加,自稳态调节的入睡压力也会增加。在24/7社会中,睡眠不足很常见,会导致打盹,闭眼导致清醒状态中断几秒钟。与睡眠相关的脑电图(EEG)活动和与觉醒有关的大脑网络失活。这种微睡眠可能是不适应的,尤其是在驾驶机动车时打瞌睡。即使微睡眠不构成威胁,也不清楚它们是否足够长,足以提供睡眠的任何好处。如果微睡眠不仅仅是启动睡眠和完成睡眠功能的失败尝试,那么,在需要时刻保持警惕的生态环境下,依赖微睡眠可能是一种适应性策略。 环境意识的降低定义了睡眠,使动物容易被捕食。虽然动物们可以通过集体睡觉来降低这种风险,但对于那些在中心远离接近的捕食者的动物来说,好处是最大的。事实上,野鸭(Anas platyrhynchos)在被其他鸟类安全包围时,会从闭着双眼和两个大脑半球(双半球慢波睡眠(BSWS))的睡眠状态转变为单半球睡眠,睁着一只眼睛,对侧半球醒着,当暴露在群体的边缘时。由于在边缘睡觉是有风险的,而且会导致低质量的单半球慢波睡眠(USWS),鸟类可能会竞争获得和捍卫群体中的中心位置,尤其是在筑巢时。然而,在企鹅等群体鸟类中,来自邻居的种内攻击和穿过群体的鸟类的干扰可能会对睡眠产生负面影响。考虑到来自外部的威胁和蜂群内的喧嚣,目前还不清楚在蜂群中心筑巢是否能带来更好的睡眠数量和质量。 该研究调查了南极帽带企鹅(Pygoscelis antarcticus)的睡眠情况,这些企鹅筑巢在一个暴露于掠食性鸟类棕色贼鸥(Stercorarius antarcticus)的种群中。在孵化期间,贼鸥主要在种群边界捕食企鹅蛋。因此,当企鹅的另一半外出觅食时,父母中的一方必须持续地保护蛋或小企鹅,它们面临着在保护后代的同时需要睡觉的挑战。此外,它们还必须有效地保护自己的巢穴不受企鹅的入侵。虽然研究人员没有直接测量微睡眠的恢复价值,但帽带企鹅在微睡眠中的巨大投入,其特征是潜在的代价高昂的短暂的视觉警惕性缺失(闭眼),以及它们成功繁殖的能力,尽管以这种高度分散的方式睡眠,这表明微睡眠至少可以实现睡眠的一些恢复功能。每次慢波产生的短暂神经元沉默可能为神经元休息和恢复提供了窗口期,其益处可能与SWS发作的持续时间无关。因此,这可能会使动物灵活地将睡眠分为短睡眠或长睡眠,这取决于它们对警惕的生态需求。